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Age of Information Explosion Information overload
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Recommender
Systems

Items can be Products, News, Movies, Videos,
Friends, etc.
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I Recommender Systems
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= Recommendation has been widely applied in online services

— E-commerce, Content Sharing, Social Networking, etc.

amazon €07y
N |

5'5:"] = m JD.C;OM

Taobao.com

Product Recommendation

Frequently bought together

Total price: $208.9

[ Add all three to Cart ]

[V Add all three to List J
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Recommender Systems

= Recommendation has been widely applied in online services
— E-commerce, Content Sharing, Social Networking, etc.

You (?) Pinterest
o) TikTok

News/Video/Image Recommendation

For you

. More For you
Recommended based on your interests

This Research Paper From Google Research Proposes A 'Message "_._u ]
Passing Graph Neural Network' That Explicitly Models Spatio-Temporal " _ ™"
Relations g

MarkTechPost - 2 days ago

desktop

9toS5Mac - 21 hours ago

Tested: Brydge MacBook Vertical Dock, completing my MacBook Pro i . l

—

E CrazyFrogVEVQRecommended channel for you

(Wsdm2023
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I Recommender Systems

= Recommendation has been widely applied in online services
— E-commerce, Content Sharing, Social Networking, etc.

Sy,

weibo.com

facebook
Linked [}

Friend Recommendation
facebook

2 Andrew Torba
FAVORITES

[] News Feed

) Messages

[52] Events 2
&4 Find Friends 17
tesd Tech.li

E Kuhcoon
aE________§

PAGES

Are They Your Friends Too?
These people now have 1 or more friends in common with you.

1 mutual friend fosr e i) 39 mutual friends 47 mutual friends
&l Add Friend 67 mutual friends %l Add Friend &, Add Friend

»

q’ \

) -
CmE—

<l Add Friend

See All Suggestions
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I Problem Formulation ay & W % |

Historical user-item interactions or Predict how likely a user would
INPUT  additional side information (e.g., OUTPUT interact with a target Item (e.g.,
social relations, item’s knowledge, etc.) click, view, or purchase)

User-item Interaction History

e e e e e e e e e e e e e e e e

o Spider Captain T L 7 ; ) .
i A,ﬁerica oy Iron Man 'V"“'°“S\'\_ Side information
! : T ltem set = " oenr eerie s Aeulaied
I'm items B : ] X ; year, genre, actor, I
| (movies) NG 3 Br Ao I reviews, etc. !
: R ) 4 : L _Teviews, ettt _
; e :
| I -
: I
! I
: ! Side information

| -

' I === I
' 1 users ! ! ﬁ T @ ,f, 5 FUSer set , social relations, age, |
‘- < » - ! | gender, occupation, etc. :

« Lily Peter David Lala A (( d

....................................................... * - ws m 2023
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= Collaborative Filtering (CF) is the most well-known technique for recommendation
— Similar users (with respect to their historical interactions) have similar preferences
— Modelling users’ preference on items based on their past interactions (e.g., ratings and clicks)

af &

5
<
m

I Recommender Systems

" Learning representations of users and items is the key of CF

User-item Rating Matrix R
_____________ User-item Interaction History g @ Y
7 Man e Sy ron Men - Minions*, S e " _ items — -
imitems " ‘@ \ﬂ: Y/ A'{ N ::“k : Lily ‘Li 5(4]|°? 2 ?
R O ARIEIEEE —I W [
! |:> : L 1 users
! <«
E - ™ ! w2227
-“\n users .- \-/ e g \v' ,' - l : : : 2 5 ,__ users — (X X ]
e, ty  Peter David ~ __ JLala .7 '
m items (movies) " EoEE
Task: predicting missing movie ratings in Netflix.
wsdm2023
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I Deep Learning is Changing Our Lives

oy & W
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Accuracy (Top-5 error)
» &
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IMAGENET

arge error rate reduction due to Deep CNN

2010

2011

2012

AIexNet

Clarifai

2013

2014 2015

Human
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mput feature maps  feature maps feature maps feature maps output
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feature extraction classification
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Image Classification

Object Detection

Bek O

Recommendation
Engines Sentiment Analysis

NATURAL LANGUAGE
PROCESSING

Voice Recognition  Language Translation
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I Deep Recommender Architecture

Input
Feature —
Layer

User Item

Context Interaction
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I Deep Recommender Architecture ay @ W % |

- y 7
Loss Function
Output Layer - g
0.0 O
Feature Interaction O O 0O :
Layer § T
L0 - D
i i - System Design
Feature Embeddin
ayer 54 10000 0000 - (0009 ;




Output Layer Loss Function
BCE, BPR, MSE n
Feature Interaction QQQ
Layer | OO0 0 !
Pooling, convolution, and the number 4~ 77777 £ ]
of layers, inner product, outer product, @@ """""" @ System Design
convolution, etc. Hardware infrastructure,
Feature Embedding e [ data pipeline, information
Layer 4 ‘OOOQ’ \QQOQ] O000 transfer, implementation,
High/low-frequency features - T --------------- T """"""""""""""""" T """""" deployment, optimization,
embedding sizes evaluation, etc.
0(0 1 O|1/{--]|0 11/0 0
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I Deep Recommender Architecture

Yy
Loss Function
Output Layer (]
Q.0 O
. O O O
Feature Interaction Layer =~ - T ----------
DD - O
Feature Embedding Layer O O Oa ______ Q QOO ________________ OO QO
lojolfz] |of1]-[o] 1]o]-Jo]
Field / Field 2 Field m
T S5 e P2
Input Feature Layer P9 % -------- -------- AAAAAA
User Item Context Interaction

Advantages

— Feature representations of users and items
— Non-linear relationships between users and
items

Manually designed architecture:

— Extensive expertise
— Substantial engineering labor and time cost
— Human bias and error

(Wsdm2023
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I AutoML for Deep Recommender Systems af & W % |

" Deep architectures are designed by the machine automatically
= Advantages

— Less expert knowledge
— Saving time and efforts
— Different data -> different architectures

Feature Generation

Feature Embedding
Feature Selection

Loss Function
Feature Interaction

Optimizer
| : | L -i- |
Data Feature RI Model Model
Collectnon Engineering > £| Constructlon) Tra|n|_ng > @
= pobl =m = ol o _,0
=0l L—» = = [ ¢°
Recommendatlon Raw = Training = Recommendation = Well-trained
Scenerios Data Data Model Model
c‘%’: Human Involved
Deployment —
@ __E_;J\"i Automated

(Wsdm2023
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AutoML for Deep Recommender Systems oy @ Ve % |
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s ' Abstract = Existing AutoML-based work
o A www21) AP ® evolves from single-component
NIS [KDD'21] RuLe [SICIRZ] (TKDE'>1] -
KOO0, AR [KDD21) o & search to multi-component joint
UMEC DeepLight
[KDD'20] ¥ [ICLR'20]  [WSDM'21] searc h
ANT °
[ICLR'21] *
* AutoG?n
ARt s ,  MWsowz = The search space of these AutoML-
[KDD’21] ’ , .
e B2 ‘ based work develops from detailed
Single-Component * e torb Multi-Component to abstract for shrinking search
o © ﬁé’ﬁ?ﬁ?ﬂ LO-‘:;GN[KDD'H] 1 Op?:uter d 1 i h
. ko Esen acre Lo-sion wlnter space and improving searc
AutoCross WWWw20] F“‘,Aés PROFIT Aﬁn Eff|C|ency.
oo moGro:; A‘Au'toHash [KDD’21] eures 21 O [TKDE'21]
| OCRMIMOEML toss  tasuan | SORZ Featre % oradient | ™ The search algorithm of existing
[KDD9] % [ICLR20] [KDD21] - k . . | b d d t-
1) ¥¢ AutoFIS * Embedding O RL WOrK IS mainly based on gradien
[u:FﬁI%s] ﬁ%?:glKDD,m] A P<E>P AMTL m |Interaction A Evolutionary h : 1:
| o IKDDS]  Avcreaure PEP chlsy . . based methods, thus providing
[EIGR 1] Detailed raimng  ©  Ofhers efficient model searching and

training mode.
The trend of AutoML for recommender system

(Wsdm2023
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I Automated Machine Learning for Recommendations t-m Q"g’./b ) % |
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= Agenda
> Introduction (Dr. LIU Yong)

> Preliminary of AutoML (Dr. ZHAO Xiangyu)

> DRS Feature Selection (Mr. WANG Yejing)

> DRS Embedding Component (Mr. CHEN Bo)

> DRS Interaction Component (Dr. TANG Ruiming)
> DRS Model Training (Dr. ZHAO Xiangyu)

> DRS Comprehensive Search (Dr. ZHAO Xiangyu)
» Conclusion & Future Direction (Dr. FAN Wenqi)

> Q&A

A Comprehensive Survey on Automated Machine Learning for Recommendations.
arXiv:2204.01390 e
(Wsdmz2023

Tutorial Website (Slides): https://advanced-recommender-systems.github.io/AutoML-Recommendations/ SINGAPORE  FEBRUAR



https://advanced-recommender-systems.github.io/AutoML-Recommendations/

Why AutoML?

(Wsdm2023
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I Success of Machine Learning

ot &

Astronomy

Energy

Image
Recognition

Manufacturing

Maintenance
Prediction

Robotic Teaching

: Material
Creative Desian
Arts 9
Game Play Search _
Chemistry
Health |
Weather Care Physics
Prediction Product Drug
Recommendation Discovery
Service Financial
_ Services
Traffic Retail Credit
Prediction Assignment
Media
Social Summary
Media Generation

(Wsdmzo23
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I Machine Learning Pipeline

Iterative Manual Tuning

Identify Data | s |Data Feature Model
Task ollectio cleaning Engineering Training

Machine Learning Pipeline

Deployment

(Wsdm2023
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I Algorithms and Hyperparameters
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/ Preprocessing \

Standardization

Feature Selection

Outlier Removal

Missing Feature
Imputation

J

Embeddings

Feature
Reduction

J

J \u

AN

Reduction \

~\

\

PCA /

Kernel PCA

ICA

LDA

NMF

Truncated SVD

/

/

\

/

/ Hyperparameters\

#components

Kernel

degree

coeff

alpha

solver

— We might want more than 1 data preprocessor!

(Wsdm2023
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I Complexity and the Best Combination oy & W %

Hyperparameters
Technique °

Preprocessing
Area

Naive Assumptions:
only 3 decisions at each level
Possible options: 3 x 3 x 3 =27

More realistic assumption:
at least 10 decisions at leach level
Possible options: 10 x 10 x 10 =1000

Choose 3 preprocessors instead of 1
— 1000 x 1000 x 1000 =
1 000 000 000

Still naive!
— Hyperparameters are often

continuous and not discrete
— infinite amount of settings!

(Wsdm2023
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I Classification Algorithms

a & 5

Recurrent
Network SVM
ResNet
Feedforward
Network
Naive
Bayes
LGB
Boosting Gaussian
Trees XGB Process
Decision Random
Trees Forests

Poly.
SVM

SGD

Kernel Linear SVM

Nearest
Neighbor

LARS
Least
Elastic-net Squares
Least-Angle Lasso
Ridge
Bayesian
Logistic Regression
Regression

4 — There are more than 100 )
classification algorithms!

— Each of these has 2-50
\_ hyperparameters )

(Wsdmzo23
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I Challenges in Designing ML Pipelines

ay
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. Data |
Collection

Identify
Task

/ Complex \

Search Space

\ /

Iterative Manual Tuning

v | | |

Data ~ Feature

/" Black-Box

Problem

»

\_ /

Model

- Post-

| cleaning Engineeringv'_;f'}/’ Training / Processing;” Deployment

Machine Learning Pipeline

/ Expensive \

Evaluations

f Noise on \

observations

N\ J

\_ J
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I From Manual ML to Automated ML ay Q/’g‘} Ve % |
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Iterative Manual Tuning

Identify Data | w. Data Feature Model Deblbymert
Task ollectio cleaning Engineering Training [ ploy

Machine Learning Pipeline

Id%nst&fy AutoML - Deployment

(Wsdm2023
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I Design Decisions by AutoML
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( classifier

AdaBoost (AB)
Bernoulli naive Bayes
decision tree (DT)
extreml. rand. trees
Gaussian naive Bayes
gradient boosting (GB)
kNN

LDA

linear SVM

kernel SVM
multinomial naive Bayes
passive aggressive
QDA

random forest (RF)
Linear Class. (SGD)

N WD RE PR WLWOT RN

S

Algorithms

\_

Y

_/

Architecture

\_ Design

/

[ preprocessor #A \

extreml. rand. trees prepr. 5
fast ICA

feature agglomeration
kernel PCA

rand. kitchen sinks
linear SVM prepr.

no preprocessing
nystroem sampler
PCA

polynomial

random trees embed.
select percentile
select rates

(ST SO IR U R S N

one-hot encoding
imputation
balancing
rescaling

—_——— [P R LB

Pre-

~

Hyper-

\_ processing /

\_ parameters /

(Wsdm2023
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* Find neural architecture A such that deep learning works best for given data

I Neural Architecture Search (NAS) ay Q‘?’}’

* Measured by validation error of architecture A with trained weights w*(A)
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I Neural Architecture Search (NAS)

* Find neural architecture A such that deep learning works best for given data

* Measured by validation error of architecture A with trained weights w*(A)

mingc 4 Lya(w*(A), A)

s.t. w*(A) € argmin,, Lein(w, A)

validation loss

training loss
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I Neural Architecture Search (NAS)

al & e 5|

* Find neural architecture A such that deep learning works best for given data

* Measured by validation error of architecture A with trained weights w*(A)

mingc 4 Lya(w*(A), A)

s.t. w*(A) € argmin,, Lein(w, A)

 Famously tackled by

Number of papers on NAS published in conferences, journals and arXiv

reinforcement learning [Zoph & Le, ICLR 2017]
e 12.800 architectures trained fully
e 800 GPUs for 2 weeks (about $60.000 USD)

Number of Papels

RRRRRRRRRRRRRRRRRRRRRRRRRR


https://openreview.net/pdf?id=r1Ue8Hcxg
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I Major Components ay @ W @ |

e Search Space:

* A set of operations (e.g. convolution, fully-
connected, pooling)

* how operations can be connected to form valid
network architectures

Search

. Space Algorithm
operations
e identity e 1x3 then 3x1 convolution
e 1x7 then 7x1 convolution e 3x3 dilated convolution :
e 3x3 average pooling e 3x3 max pooling Evaluation
e 5x5 max pooling e 7x7 max pooling Method
e Ix1 convolution e 3x3 convolution
e 3x3 depthwise-separable conv e 5x5 depthwise-seperable conv
e 7x7 depthwise-separable conv Update parameters

(Wsdm2023

SINGAPORE FEBRUARY 27 - MARCH 3



I Search Space ay & W S5

* Building blocks are like basic genes for these individuals

 Some examples here

* Genetic CNN: only 3X3 convolution is allowed to be searched (followed by default
BN and RelLU operations), 3X3 pooling is fixed

NASNet: 13 operations shown below

PNASNet: 8 operations, removing those
never-used ones from NASNet

ENASNet: 6 operations
DARTS: 8 operations

1x3 then 3x1 convolution

3x3 dilated convolution

3x3 max pooling

7x7 max pooling

3x3 convolution

5x5 depthwise-seperable conv

identity

1x7 then 7x1 convolution

3x3 average pooling

5x5 max pooling

1x1 convolution

3x3 depthwise-separable conv
7x7 depthwise-separable conv

[Xie, 2017] L. Xie et al., Genetic CNN, /CCV, 2017.
[Zoph, 2018] B. Zoph et al., Learning Transferable Architectures for Scalable Image Recognition, CVPR, 2018.

[Liu, 2018] C. Liu et al., Progressive Neural Architecture Search, ECCV, 2018.
[Pham, 2018] H. Pham et al., Efficient Neural Architecture Search via Parameter Sharing, ICML, 2018. dem 2023
[Liu, 2019] H. Liu et al., DARTS: Differentiable Architecture Search, ICLR, 2019. SINGAFORE.  FEBRUARY2T -MARCHS
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I Major Components ay @ W @ |

e Search Strategy

 Sampling a population of network architecture
candidates (child models)

e Rewards: child model performance metrics (e.g.
high accuracy, low latency)

Search
Strategy
e Algorithms
e Random Search Evaluation

* Reinforcement Learning Method

* Gradient descent
e Evolutionary Algorithms

Update parameters

(Wsdm2023
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I Search Algorithm af & W % |

* Finding new individuals that have potentials to work better
e Heuristic search in the large space

* Two mainly applied methods: the genetic algorithm and reinforcement
learning

* Both are heuristic algorithms applied to the scenarios of a large search space and
limited ability to explore every single element in the space

* A fundamental assumption: both of these heuristic algorithms can preserve good
genes and based on which discover possible improvements

* Also, it is possible to integrate architecture search to network optimization

* These algorithms are often much faster

[Real, 2017] E. Real et al., Large-Scale Evolution of Image Classifiers, ICML, 2017.
[Xie, 2017] L. Xie et al., Genetic CNN, /CCV, 2017.
[Zoph, 2018] B. Zoph et al., Learning Transferable Architectures for Scalable Image Recognition, CVPR, 2018.

[Liu, 2018] C. Liu et al., Progressive Neural Architecture Search, ECCV, 2018.
[Pham, 2018] H. Pham et al., Efficient Neural Architecture Search via Parameter Sharing, ICML, 2018. dem 2023
[Liu, 2019] H. Liu et al., DARTS: Differentiable Architecture Search, ICLR, 20109. SINGAPORE  FEBRUARY 27 - MARCH S
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I Major Components ay @ W @ |

e Evaluation Strategy

* We need to estimate or predict the performance
of child models

* |n order to obtain feedback for the search
algorithm to learn

Search
Algorithm
* Methods
* Training from Scratch Evaluation
* Proxy Task Performance Strategy

e Parameter Sharing
* Prediction-Based

Update parameters

(Wsdm2023
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I Evaluation Method aff & g? %|

* Evaluation aims at determining which individuals are good and to be
preserved

* Conventionally, this was often done by training a network from scratch

* This is extremely time-consuming, so researchers often train NAS on a small dataset
like CIFAR and then transfer the found architecture to larger datasets like ImageNet

* Even in this way, the training process is really slow: Genetic-CNN requires 17 GPU-
days for a single training process, and NAS-RL requires more than 20,000 GPU-days

* Efficient methods were proposed later

* |deas include parameter sharing (without the need of re-training everything for each
new individual) and using a differentiable architecture (joint optimization)

* Now, an efficient search process on CIFAR can be reduced to a few GPU-hours,

though training the searched architecture on ImageNet is still time-consuming
[Xie, 2017] L. Xie et al., Genetic CNN, /CCV, 2017.

[Zoph, 2017] B. Zoph et al., Neural Architecture Search with Reinforcement Learning, ICLR, 2017. il
[Pham, 2018] H. Pham et al., Efficient Neural Architecture Search via Parameter Sharing, ICML, 2018. wsdm 2023
[

Liu, 2019] H. Liu et al., DARTS: Differentiable Architecture Search, ICLR, 2019. SINGAPORE  FEBRUARY27 - MARCH S



I NAS with Reinforcement Learning

* NAS with Reinforcement Learning [Zoph & Le, ICLR 2017]
e State-of-the-art results for CIFAR-10, Penn Treebank
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I NAS with Reinforcement Learning

* NAS with Reinforcement Learning [Zoph & Le, ICLR 2017]
e State-of-the-art results for CIFAR-10, Penn Treebank
e Large computational demands:
800 GPUs for 3-4 weeks, 12.800 architectures trained
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I NAS with Reinforcement Learning

* NAS with Reinforcement Learning [Zoph & Le, ICLR 2017]
e State-of-the-art results for CIFAR-10, Penn Treebank

* Large computational demands:

800 GPUs for 3-4 weeks, 12.800 architectures trained

Sample architecture A
with probability p

[

The controller (RNN)

l

v

Trains a child network
with architecture
A to get accuracy R

J

Compute gradient of p and
scale it by R to update
the controller

APORE FEBRUAR



I NAS with Reinforcement Learning oy Q/'S’? Ve % |

HUAWEI

[Zoph & Le, ICLR 2017]

* Architecture of neural network represented as string e.g., [“filter height: 5”, “filter width:
3”7, “# of filters: 24”]

e Controller (RNN) generates string that represents architecture

Softmax classifier

N\

Number‘ Filter _ Filter . Stride . Stride _ Number_ Filter .
" |of Filters \ | Height [\ | Width |\ | Height |\ [ Width [\ |of Filters[. | Height |\

IR A P

> > >

AT 4T 4T 1T L 41

i
&
;

'l ‘| ‘l 'l .| ?l ? .I
e ORF o F B W W
s » < P —
Layer N-1 Layer N Layer N+1

Embedding wsdm2023

SINGAPORE FEBRUARY 27 - MARCH 3



I Training with REINFORCE oy

Accuracy of architecture on
Parameters of Controller RNN held-out dataset

e
J(0c) = Ep(ay.z:6.)[R]

/

Architecture predicted by the controller RNN
viewed as a sequence of actions

RRRRRRRRRRRRRRRRR



I NAS as Hyperparameter Optimization %’ % |

[Zoph & Le, ICLR 2017]

* Architecture of neural network represented as string e.g., [“filter height: 5”, “filter width:
3”7, “# of filters: 24”]

* We can simply treat these as categorical parameters
e E.g., 25 cat. parameters for each of the 2 cells in [Zoph et al, CVPR 2018]

Number_ Filter _ Filter _ Stride _ Stride _
of Filters|' | Height [\ | Width [, | Height [, | Width [\




NAS with Evolution

oy & W
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|

* Neuroevolution

(already since the 1990s [Angeline et al., 1994; Stanley and Miikkulainen, 2002])

* Mutation steps, such as adding, changing or removing a layer
[Real et al., ICML 2017; Miikkulainen et al., arXiv 2017]

test accuracy (%)

<]

|C+BN+R<SN+A+3N+R+BN+A|

C+BN+R+BN+R

3

C+BN+R+BN+R

0.9 28.1

70.2

wall time (hours)

(Wsdm2023
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I RL vs. Evolution vs. Random Search oy Q@b Ve @ |

[Real et al., AAAI 2019]

during architecture search final evaluation
0.92/ Evolution | e e
T 0.967
> |
© 9 & -0
> <| o
= 2
[ ;
- F L1 Evol.
o ©
S k= O RL
- A RS
0.89 0.957 :
20 Experiment Time (hours) 200 0.75 Model Cost (GigaFLOPs) 1.35

(Wsdm2023
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https://arxiv.org/pdf/1802.01548.pdf

I Huge Compute of Blackbox Methods ay & Y % |

Dataset:
Reference Error (%) Params GPU
CIFAR-10 (Millions) Days
Zoph and Le (2017) 3.65 37.4 (22,400 Going to
cell
é ZOph et al. (2018) 3.41 TR 2.000 search
space
Real et al. (2017) 5.40 5.4 2,600
=
Real et al. (2019) 3.34 3:2 3,150
[Wistuba et al., preprint 2019]

(Wsdm2023
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https://arxiv.org/pdf/1905.01392.pdf

I Overview of NAS Speedup Techniques oy Q"g’& Q) % |

* Weight Inheritance & Network Morphisms
e Local changes in architecture, followed by fine-tuning steps
e [Cai et al, 2018; Elsken et al, 2017; Cortes et al, 2017; Cai et al, 2018, Elsken et al, 2019]

* Weight Sharing & One-Shot Models
 ENAS [Pham et al, 2018], DARTS [Liu et al, 2019] and many follow-ups

* Meta-Learning
e Learning across datasets
* To initialize architectural weights of DARTS [Lian et al, 2020; Elsken et al, 2020]
e Prior for blackbox optimization methods [Wong et al, 2018; Runge et al, 2019; Zimmer et al,
2020]
* Multi-Fidelity Optimization
* Exploit cheaper proxy models for blackbox optimizers, in particular Bayesian optimization
e [Jamieson & Talwalkar, 2016; Li et al, 2017; Falkner et al, 2018; Zela et al, 2018; White et al, 2021]

(Wsdm2023

SINGAPORE FEBRUARY 27 - MARCH 3



I Network Morphisms §5’ %|

* Network morphisms [Chen et al., 2016; Wei et al., 2016]

e Change the network structure, but not the modelled function (i.e., for every input,
the network yields the same output

* as before applying the network morphism)

A+ b =

e Can use this in NAS algorithms as operations to generate new networks
* Avoids costly training from scratch



I Overview of NAS Speedup Techniques &b %’ % |

* Weight Inheritance & Network Morphisms
e Local changes in architecture, followed by fine-tuning steps
e [Cai et al, 2018; Elsken et al, 2017; Cortes et al, 2017; Cai et al, 2018, Elsken et al, 2019]

* Weight Sharing & One-Shot Models
 ENAS [Pham et al, 2018], DARTS [Liu et al, 2019] and many follow-ups



HUAWEI

I DARTS: Differentiable Architecture Search <% Q"?’}‘ Ve %l

0

Candidate operations

identity

1x7 then 7x1 convolution

3x3 average pooling

5x5 max pooling

1x1 convolution

3x3 depthwise-separable conv
7x7T depthwise-separable conv

[Liu et al at ICLR 2019]

1x3 then 3x1 convolution

3x3 dilated convolution

3x3 max pooling

7x7 max pooling

3x3 convolution

5x5 depthwise-seperable conv

(Wsdm2023
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I DARTS: Differentiable Architecture Search <% Q‘?’}’ Ve % |

HUAWEI

% [Liu et al at ICLR 2019]

(@) (b)

* Relax the discrete NAS problem (a->b)
— One-shot model with continuous architecture weight a for each operator

(4,3)
— Mixed operator: 5(1'»9')(3;)22 exp(ao )

0€0® ZO’GO exp(a(()z,’J))

o(x)

(Wsdm2023
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I DARTS: Differentiable Architecture Search <% Q‘?’}’ Ve % |

HUAWEI

% [Liu et al at ICLR 2019]

(@) (b)

* Relax the discrete NAS problem (a->b)
— One-shot model with continuous architecture weight a for each operator

(d)

(4,5)
— Mixed operator: ot (z) = exp(ao zij) o(z)
o€ ZO'GO exp(ao,’ )

* Solve a bi-level optimization problem (c)

min  Lyq(w*(a),a)

st w(a) = argming Livuinlw;a)
wsdm 2023
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HUAWEI

% [Liu et al at ICLR 2019]

I DARTS: Differentiable Architecture Search <% Q‘?’}’ Ve % |

(@) (b)

* Relax the discrete NAS problem (a->b)
— One-shot model with continuous architecture weight a for each operator

(d)

— Mixed operator: ot (z) = d o(z)

0€0® ZO’GO exp(a(()z,’J))

* Solve a bi-level optimization problem (c)

min  Lyq(w*(a), a)

st w(a) = argming Livuinlw;a) p
* Inthe end, discretize to obtain a single architecture (d) wsdm2023

SINGAPORE FEBRUARY 27 - MARCH 3
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I Background \‘5’ % |

Yy

* Feature selection:
» Select predictive features prior to model construction

Loss Function

---------------------

* Importance:
* Time/Memory efficiency
* Accuracy

......................................

---------------------------------------

.........................................................................

PevY =mmm T OYYY) e Classification:

e Candidates

e Granularity

 How they combine with DRS




I Background — Candidates

* Selection from raw features
* Occupation
* Age
* Date

Data

Chlent Scientist

Occupatio
* Selection from generated features
* Occupation & Age
* Date & Age

1

* Generated features v.s. Feature interaction
* Explicit v.s. Implicit
* Feature engineering v.s Model construction

25
6 Data

Student Scientist

Occupation & Age

i 7/ /4

0-3

Occupation & Date 74

(Wsdm2023
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I Background — Granularity > e @ |

* Field-level selection
e Select or deselect the whole feature field
* E.g., drop “Date”

Dat 16 25
Student Scientist 0s
Occupation Age
* Feature-level selection
» Select or deselect specific feature values
e E.g., drop “0-3” for “Age”
- May3  Feb27 7 16 25
Shident | \oOSREL c‘ x
Age

Occupation

(Wsdm2023
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I Background — Combination Methods o &

e Filter

* Filter redundant features with specific scoring functions
* Neglect dependency with subsequent DRS

* Wrapper
e Elaborate feature set
 Computationally intensive

* Embedded
* Integrated into DRS
* Fixed DRS

Set of all

features

Set of all
features

Set of all
features

Selecting the Learning Performance
best subset Algorithm

Selecting the best subset

~

Generate a , Leaming | | performance
subset Algorithm

~

Selecting the best subset

—

Generate a Learning Algorithm +

subset Performance

3 /

\

/

(Wsdm2023
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§ FsTD

* Motivation:
e Large search space of feature selection
* Feature selection is a one-player game

* Target:
» Select features using temporal difference (TD)
* Field-level selection
* Filter / Wrapper

Using reinforcement learning to find an optimal set of features, 2013

(Wsdm2023
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j FsTD ay & W5

* Strategy:
* UCB-Phase (a. Exploit): Select the most predictive/stored feature

« Random-Phase (b. Explore): Randomly select a feature

Transition: Seen or unseen

Reward: AUC score

Optimization: Temporal difference + UCB

a T b 1T
< 444\ < 44\
I . N . 000 < . 11| eee _I__

(Wsdmzo23

An example of Tic-Tac-Tau game. SINGAPORE _ FEBRUAR

o



j Fsto al S Iy

* Scoring features: temporal difference (F': feature set, f: the new feature, VV: AUC)
AOR; = Average{V (F;) — V(Fi4+1)}

(AORf)New = [(k — 1)(AORy)owa + V(F)]/k,

* Final selection:
* F-FSTD: Select features with the highest AOR (single features)
 W-FSTD: Search in the traversed graph space (feature sets)

a

20 BE R B
(21 7:] d
e = 2023

RRRRRRRRRRRRRRRRRRRRRRRRRR




B MARLFs al & W Y|

* Target:
* Select features via multi-agent RL
\
X
v

»| Current | {fi, f2} |

/ Previous |{f1, f2. f3}
\ elected Feature
X
X
3

* Field-level T
. E b dd d Current \/ \/
mbedde A

Previous

Subspace

(Environment)
Reward

A

Reward

FA1 FA2 FA3 FA4 :
Assignment

 Problem formulation: ‘K

* Agent: N agents for N feature fields (1 on 1)
* Action: Select or deselect the corresponding feature
* Environment: Selected feature subset

Automating feature subspace exploration via multi-agent reinforcement learning, KDD 2019

(Wsdm2023
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l MARLFS

oy & W

HUAWEI

|

* State:
* Meta descriptive statistics

Selected Feature Matrix Descriptive Statistics Matrix
f1fafefs fo f1fafefs fo

sample 1
sample 2

sample 3

AR

std meanminmax Q; Qa2 @1

std of std

- - - —p-TIEQN

- === MiNn

std of mean

Expand

—

Q2 of Q2

Q3 of Q3

Meta Descriptive Statistics Matrix State Vector

(Wsdm2023
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| MARLFs a & W 5|

* State:

 Meta descriptive statistics
e Autoencoder

Selected Feature Matrix

Latent Matrix Static Encoded Matrix State Vector
f1f3f6f8 f9 f1f3f6f8f9 latent a latent blatent ¢ latent d
sample 1 latent 1 % “““ » latent 1 latent a1
sample 2 latent 2 % “““ » latent 2 latent az
sample 3 latent 3 g ----- » latent 3 latent as
sample 4 Auto. 'Atent 4 % "o, latent 4 latent a4
el s Encoder i P B Encoder Expand
I > latent k latent di

(Wsdm2023
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| MARLFs a 5|

HUAWEI

* State:

* Meta descriptive statistics
* Autoencoder

e Graph convolutional network (GCN)

Selected Feature Matrix Feature Correlation Graph State Vector

‘\

f1 3 fe fs fo ) .
sample 1 D Aggregate '
sample 2 w* ‘ Z
sample 3 — N S
C rt :
sample 4 i . . Combine kA
—i [ p =7>
s @
sample 6 7 ey
s ‘ r/ 5
e o o o o . A :
s @ @
- ®

Q-

(Wsdm2023
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I MARLFS af & e 5|

* State:
* Meta descriptive statistics
e Autoencoder

* GCN
* Reward:

* DRS accuracy ;

* Information redundancy (x_i, x_j: selected features) Rd = ISP ;: I(xi; x;)

* Information relevance (c: ground-truth) 1 Xi,Xy€S

Rv= — I(x;;c)
51 s
i

* Optimization: DQN



I Subsequent works of MARLFS

al & My

Agent2

|

Agent1

|

e AutoFS: Introduce external knowledge

TR

Agent4

|

Agent5

|

Agent3

|

Agent6

|

Agent7

|

Feature2 Feature1 Feature4 Feature5 Feature3 Feature6 Feature7

el v v x v X X
e | v X X v | X v
Feature | Hesitant | Assertive | Hesitant _ Assertive _ _
Type Feature Feature Feature Feature
Agent Hesitant | Assertive | Hesitant _ Assertive _ _
Type Agent Agent Agent Agent
Advuse
Trainer Agent2(H) Agent1 (A) Agent4(H) AgentS AgentS(A) Agent6 Agent7
s | v v 4 v X v

AutoFS: Automated Feature Selection via Diversity-aware Interactive Reinforcement Learning, ICDM 2020

(Wsdm2023
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I Subsequent works of MARLFS

* AutoGFS: Grouping feature fields

feature1

feature2

feature3

feature N

Group1

Group2

___________________

actions
—_—

actiong.

actions
—

-

Selected
Feature
Subset

\_J

Environment

train

)
Reward
N

)
Actions

~—

advise

State store

_____________

Memory
Unit h

Memories

Intra-group
Selection

Inter-group
Selection

Hierarchical
Trainer

Group-based Feature Selection via Interactive Reinforcement Learning, SOV 2021

(Wsdm2023
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Subsequent works of MARLFS ay & e 5|

HUAWEI

* AutoFS
* AutoGFS
* SADRLFS: Multiple -> Single agent

Control

Feature order Environment Memory Policy dem 2023

Simplifying Reinforced Feature Selection via Restructured Choice Strategy of Single Agent, ICDM 2020 SINGAPORE  FEBRUARYZT-MARCH'S



I Subsequent works of MARLFS

ay & Y T

 AutoFS
AutoGFS
SADRLFS

Mini-
baches

DAIRS: Simultaneously select features and samples

Feature and Instance Joint Selection: A Reinforcement Learning Perspective, SIGIR 2022

randomly sampling

Mini-
baches train control
- Policy
. Networks

Mini-
baches control
i
0 0) (0 0)
N advise, ~\—/  select
Random Forest Instance Agent
Trainer

oy (o=
o ﬁ'«q—p/‘ » advise A\U/
OC10 B,
Feature Agent Isolation Forest
Trainer
lselect
Iy
>
N
: Data Matrix selecy, | | Selected
: Data
B
N (input)

T

Memory
Unit

store I store T

N A -3

/\ﬂ Actions ,'(_(Mard)’ State )

padding
—_
convolution

T

selected instances

selected features

Collaborative-changing
Environment

VG e
Wsdm2023
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I AutoField af g? % |

* Motivation
* Feeding all possible features —> Extra embedding parameters
* Manually selecting feature fields > Expert knowledge & Labor effort

Selected Dropped

* Target:
* Automatically select feature fields
* Field-level selection

e Embedded Gendelrﬁ Age Genre{; Year Time {}Website
User [tem Context

(Wsdm2023
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AutoField: Automating Feature Selection in Deep Recommender Systems, WWW 2022



I AutoField al W5
HUAWEI
e Data preparation: field embeddings
E'
e, e, e, €
e Search stage: ] : ___, Deep Recommendation
. Model (Search
* Step 1: soft selection 4 odet (Seareh)
* Step 2: updating DRS (Search) o ezE o o Controller
» Step 3: updating controller ® | (s o o a3 0y
—> 0 00 3
: Module o ;ag Eag §a2 Search Stage
* Retraining stage: P E
] Embedding E Retraining Stage
e Step 4: hard selection Raw Feature Ficlds el ey
¢ Step 5: OptImIZIng DRS (Retrain) 4 S O s, Deep Recommendation
‘ Model (Retrain)
@

(Wsdm2023
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I AutoField

* Controller structure:
e N parallel nodes for N feature fields
* Node i contain two values: {af, a}}

* |n training:
* af of predictive feature fields would increase
* o of non-predictive feature fields would increase

e {af, af} is computed by Gumbel-Softmax

e Optimization: Gradient

(Wsdm2023
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I AutoField

D W

all & ¥ 5|

* Retraining Stage

* Only using K fields with highest score
* Adapting model structures
e Change subsequent DRS

Sigmoid@
/T\

A
RelLU @

Linear Transformation/\

(& oncatenate/T\

Projectionf\
01 0000100

Binan'zatioan\

Field1 Field2

. ' . MLP Layers

Embedding Layer

ﬁ

Feature
Selected
1 1
o of o0y o3 0y
Field 1 Field 2 Field 3

(c) Selection result for retraining

ofof~J1] - [o]1]~Jo] - [1]o]~]o]

Field 1 Field i Field m

(Wsdm2023
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I AdaFS

* Motivation:
 Existing feature selection methods selects a fixed subset of features
 Different user-item interactions = Different contributions

* Target:
* Adaptively selecting the most predictive features

* Field-level selection
e Embedded

Movie: Star Wars

. Label: 1
Drop Occupation :
Baseline: 0.42
Qonmation: 5 AdaFS: 0.88

College Student

AdaFS: Adaptive Feature Selection in Deep Recommender System, KDD 2022

(Wsdm2023
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I AdaFS

* DRS

* Embedding component
* Inference model (MLP)

* Controller
* Adaptively scoring feature fields

 Feature selection

e Hard selection
e Soft selection

" output @

/’
\

MLP h;

MLP Component '

o

SeIS:cftEion o

 Hard @p)(o)---
Selection . -

2> DO0DO0. -

Feature 25
Selection e

%, Fields

BatchNorm E QOOOQO
EniEZf:luJi(la'lgsE OOO OOO

Feature e

Field 1 Field 2

Y WY A
? N

|l 19 9 O

i By Controller

Field N

(Wsdm2023
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I AdaFS oo Q/?"/b Ve :%|

* Controller Network [ ouput 9 O mpcomponent’
« Scoring the feature fields with weights St apep)-
* MLP + Softmax O O O |

* BatchNorm:

MLP hy Hard jjj
* Making embeddings comparable O O O e

SS/HS QQO @@ @ M .QO Embedding Component%‘i
Feature Weights af’ <. .- 'y _ .

Feature
Selection e S P SR FR——

A
Softlmax

N R S N NEORE [
O O Q BatchNorm £ |()()() OO0 --- QOO ”, ______________ ;

MLP A — y W— s 4

Q O O E;EZEUJEQSE OOO OOO OOO ’ Controller
T

BatchNorm £ (OO () OO0 000 Fg:atlgge X | Field1 Feld2 | --- —

Field 1 Field n Field N

(Wsdm2023
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I AdaFS

e Soft Selection
* Keeping all feature fields
* Feature weights = Feature embeddings

 Hard Selection
» Selecting fields with highest weights

* Optimization: Gradient

* Drawback:
* Keeping all parameters

. Selection

: Hard
. Selection

SS/HS

Feature
Selection

BatchNorm E |

Feature
Embeddings

4 N P — 0. Derrveveverveseeseesesesenenee :
e . N e, .
e S —— e ________________ |
................................................................... (o)~ @p)| T
000 OO0 -+ OO0 i+ = R |
@ @ 9
OOO QOO QQO """" )\O O O} Controller

Feature X

% Fields

(Wsdm2023
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§ LpFs «

* Motivation
* Removing feature fields with non-zero weights hurt the performance
* Small weights do not guarantee redundant feature fields

* Target
* Generate exact-zero weights for redundant feature fields
* Field-level selection

e Embedded

LPFS: Learnable Polarizing Feature Selection for Click Through Rate Prediction, 2022

(Wsdm2023
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} LPFS

oy & W

HUAWEI

% |

 Problem formulation:

y=f(w;e) =p

* LPFS:

£, 21 and g'¢(x)

ge(x) =

x2

x2+¢€

e 6,
— L1
—— smooth £°, £=0.1

1 —— smooth £°, £ =0.01

—— smooth £°, £ =0.001

V%

=1

0
X

frequency

g9(x) =[g(x1),9(x2), ..., g(xN)]
y=f(w:g(x)e)

=
[.....‘ﬁ

)

LS °°° @ ©® ©

gate values

frequency

‘ embedding
® multiplication

@ continuous features\

Q fully connected layers

‘ dense representation

\O gate element

o

oaill |

LO

gate values

1

(Wsdm2023
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j Lprs al @ S Iy

N ) —
* Problem of LPFS: Gradientat x = 0 is O. ~
&
* Sensitive to noise *
* Evolving user behavior in DRS g
2X€ Ny
J =
ge(x) = P
(x% +€)? o emom
-1 e+ + (x), €=0.001
-1 0 1
* LPFS++: x
5 20| — Ge++(x), €=0.1
(%) x§+e + ae'/T arctan(x), x>0 = s om0
b ] |
e - X 4aellt arctan(x), x <0 15
xX°+e ’ _
=
’ 2|x|e aellT =]
Geus (%) = (x2 +€)? ) x2+1 51 4&
0 4 g

* Optimization: Gradient - X ' wsdm2023
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j optFs e

________________________________

Classifier !

* Motivation

* Field-level selection is too coarse 2000 9
* E.g., “user ID” =i SeseeEee s Eera
* Feature interaction considers redundant features { Embegdng. | Interacion | Forture

TSR s Hesbagrolectird R T et ' Interaction
1

e Target @ ® 00 00
 Conduct feature-level selection § S =y o
* Simultaneously finish feature interaction search 0 00000 -~ 00O
 Embedded . Field 1 Field 2 Model Input  Field N '

00 50000 oooi

wsdm 2023

Optimizing Feature Set for Click-Through Rate Prediction, WWW 2023 SINGAPORE  FEBRUARY 27 - MARCH 3



§ optrs af @ |

Model input Model | G(") O() #()
FM [26] null | inner product null
z=[z1,23,- ,2p] = [Xkl, Xfeps """ s an], 1<ki<m, DeepFM[7] | MLP | inner product | average

e Feature selection: DCN [31] | MLP | cross network | average
5 IPNN [24] | null | inner product | MLP
eki =8k, ©€k, =8k, © (E X xki)' OPNN [24] | null | outer product | MLP
 Search space: Gates g;. € {0,1 PIN [25] | null ML MLE
p gkl { } _____ I::::::.*:::::::?::::::.’:::.'::.'.'%::_'::_'_':::
o ® 00 00
* Feature interaction selection: S, W T
' 100 00000 - OOO|
g(k,',kj) = 8k, X gkj’ v(i,j) = @(ei, ej) ' " Field 1 " Field2 * Model Input  Field N :
100 00000 000
* Prediction: . OO QQQ
. 5 o000 000
—_ i Feature Set ' N7 7 7 A A NS A NS
y - gf((g x g @ V) @ g(g @ e))’ E Input Layer

(Wsdm2023
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I OptFS ‘W “5’ %|

""""""""""""""""""""""

e Searching

Classifier E

...............................

_ o(gec X 1) =T
o(g”)
* Retraining QD @ @ @ @

0, g <0 '® - @ ©® - ©

1
' Feature |

g = i _Embedding il Interaction  jccode !
1, otherwise : £ Layer
; Interaction Operation

10{ tau=1(sigmoid) | == step function

1
1

- 10 . !
p | @ ® 00 000
— tau=10 [ : |
08 { — tau=50 / 08 1 ' Embedding Table :
' A Embedding Layer .
06 - 06 '._--..----_--_-_-_---_-----------------9_-_y.__:
______________________________________________

)

/ |00 00000 - 00O
J

02 02 'l Field1 Field 2 ¢ FieldN
l

Model Inpu

o ——=4 | e 00 00000 000

-100 -75 -50 -25 00 25 50 75 100 -100 -75 -50 -25 00 25 50 75 wWo | Emmsmwnnnl saaaamaanasTansiiaiaiTs o !

- - ;OO 000!

(a) Searching Stage (b) Re-training Stage Feature mle) O Q OO O OO

* Optimization: Gradient wsdm2023
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I Selection of raw features af & W @ |

HUAWEI

Granularity Gating/Scoring Search Strategy
FSTD Field-level Temporal Difference RL (TD + UCB)
MARLFS Field-level None RL (DQN)
AutoField Field-level Continuous Gradient
AdaFS Field-level Continuous Gradient
LPFS Field-level Zero/Non-zero Gradient (LO)
OptFS Feature-level Approx. zero Gradient (LO)

* Reinforcement learning methods consider the problem of feature selection as a Markov

decision process. They are less prone to overfitting since they usually overall
performance of the model when designing reward functions;

* Gradient-based approaches are more practical to real-world recommender systems
owing to their efficiency and simplicity. In addition, they are flexible to be applied to
various recommendation models and datasets.
wsdm2023
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e DRS Feature Selection
e Selection from raw features
* Selection from generated features




I AutoCross

ay & Y T

Target:

e Select crossed features

* Field-level
* Wrapper

Feature set generation:
{A, B, C, D}
> {A, B, C, D, AB}
>{A, B, C, D, AB, CD}
>{A, B, C, D, AB, CD, ABC} —
>{A, B, C, D, AB, CD, ABC, ABCD}

Feature evaluation:

A,BC,D
| |
+ AB + AC +CD
| [ |

+ AC + CD + ABC + ABD

|
l | l

| + ABC +BCD | |+ABCD
|
+ BD + BCD I + ABCD I

+ AC

* Field-wise logistic regression

P(y = 1|x) = Sigmoid(WpewXnew|+ WeXc)

Optimization: Beam search
Automatic Feature Crossing for Tabular Data in Real-World Applications, KDD 2019

(Wsdm2023
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) GLIDER af] @ W5

* Problem:
* Select generated features for black-box DRS
* Field-level
 Filter

(Wsdm2023

Feature Interaction Interpretability:A Case for Explaining Ad-recommendation Systems via Neural Interaction Detection, ICLR 2020 SINGAPORE  FEBRUARY 27 - MARCH 3



} GLIDER S e 5|

* Problem:
* Select generated features for black-box DRS
* Field-level
* Filter
@ {x3, x5} are interacting
* Step 1: Global interaction detection P
nteraction
e LIME: Perturb the input feature D‘?39°,10’+\ b
. . T3 | R S
D = {(xi,9:) | i = f(&(x:)),%: € {0,1}7}. N >
* Gradient NID: Detect the interaction - - v
1T g(%) 2
W(I) - (()j,nai,w .o .f)i’ilzl) : xs

* Optimization: Gradient



) GLIDER @ %5

* Problem: @
* Select generated features for black-box DRS {23,5} are interacting
* Field-level R [ -
. Detector \\
e Filter
I3 o i Z * e
* Step 1: Global interaction detection .
* LIME: Perturb the input feature i = “linear model
D = {(Xi,4i) | yi = f(§(x:)),%i € {0,1}7}. Z5
* Gradient NID: Detect the interaction ; @ , Y
Il g (% TS t
@)= e I}
OE A ()arilzl IR f
:L- rec
e Optimization: Gradient :

‘ — j${3,5}‘T T
e Step2: Construct DRS and retrain | =

e Same model: enhancement
» Different models: Teacher-student wsdm 2023



B Aere afl & 5|
* Target:

HUAWEI

e Construct and select combinatorial features
e Field-level

* Combination of Filter, Embedded, Wrapper
* Procedure:
* 1-Filter: Drop features with low variance

e 2-Embedded: Generate feature importance by GBDT/RF

* 3-Wrapper: Add features in a cascaded manner, greedy search
Feature Construction

Feature Selection
Indicator set — Operator
S|et
Field combination S N Co?@];itﬁragrial
Searc_h ; ) Consthﬁon _______
= _ Freld pair "= paradigms
1
41X T
3 :
AEEEEE Tme
5 windows

L P wsdm2023
AEFE: Automatic Embedded Feature Engineering for Categorical Features, 2021
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I Selection of generated features “fv’ @ |

Combination Granularity Gating/Scoring Search Strategy
AutoCross Wrapper Field-level None Beam Search
GLIDER Filter Field-level NID Gradient
AEFE All Field-level Continuous Greedy Search

* Selectively learning the generated features can bring great precision improvement to
prediction. They are highly interpretable, which is helpful for digging deep into the
underlying relationship of the data;

 Compared with selection from raw features, generated feature selection usually has a
much larger search space. Researchers usually adopt greedy search methods, which
suffer from the heavy storage pressure and time-consuming process. It is highly desirable
for efficient AutoML techniques to facilitate the selection from generated features.

(Wsdm2023
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I Summarize AutoML for FS aff & gf? @ |

Combination Granularity Gating/Scoring Search Strategy
FSTD Filter/Wrapper Field-level AUC RL (UCB)
Raw Feature MARLFS Embedded Field-level None RL (DQN)
AutoField Embedded Field-level Continuous Gradient
AdaFS Embedded Field-level Continuous Gradient
LPFS Embedded Field-level Zero/Non-zero Gradient (LO)
OptFS Embedded Feature-level Approx. zero Gradient (LO)
Generated AutoCross Wrapper Field-level AUC Beam Search
Feature GLIDER Filter Field-level NID Gradient
AEFE All Field-level Continuous Greedy Search

(Wsdm2023
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I Background ay @ W (@|

HUAWEI

y
Loss Function
Output Layer (7]
_____________________ Embedding Table
EoXeyo¥ ~
: : X
| 660 }Ry d\
Feature Interaction Layer T -----------
®® _____ @ Number of Feature Values Embedding Size
[Feature Embedding Layer OOOO ....... \%@! --------------- | OOOO
""""" (R M S
: : : * The embedding layer is used to map the high-dimensional
|0L;)e|ld |]1| |OF|i1eL1 |20| 1 features into a low-dimensional latent space.
______ TTTT * The cornerstone of the DRS, as the number of parameters in DRS
; @ @ & = | is concentrated in the embedding table.
Input Feature Layer : — ;
TUser " htemContext Interaction
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Background ay & W S5

Feature Feature Embedding Storage capacity [ — . - —F -
(T ~ Inference efficiency 24 ! : ']
fl el : -0.1 0.15 | 0.08 |—0.2 0.12 | 0.04 | 0.01 | 0.21 Prediction accuracy (LH 0.2% | | 1
S e S B T e ] i |
f2 e, |(: 0.16 | 0.2 | -0.1 Io.15 021 | o |o013 | -02 } = 0.2: . —Emg:iﬁ : .
| | | I'{l——Emb_128 ! I
f3 e3 | ||023| o (02303601 014]002]|031 | 02# — . . . 1 "
: | : | 069 0 . I L 30
f e || 0.02 | 0.00 | 01 [loas | 01 [ 02| 01| o |! ' ! 1
-+ 4 | | | > 1 ! I
) P - g .
I | c | I
I | 3 0.66 D
| L I 3
fV—l ey_1 | 0.15 | 0.09 | 0.2 :-0.1 0.26 | 0.04 | -0.1 | 0.1 | Column-based | < ; | :
I | - | 1 | 1 I
fV eV { 0 0.2 0.16 |0.04 0.05 -0.1 0.4 0.02 I Row-based l 0.6? ! I 1|0 . 2|0 : I 5
_______  -—————— I
________ . ____t Frequency N
low-frequency high-frequency

To improve the prediction accuracy, save storage space and reduce model size, AutoML-based
solutions are proposed for the learning of feature embedding.
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I Background

ay

&
4/
{1

Feature Feature Embedding
T T — T
f1 e, ||-01|o01s|o008 |02 |012 004001021
(I = l
1016 | 02 | 01 |lo.is 021 | o |[o013 | 02
) | !
f3 e; | j]023| o |o023[036|-01|014|002[031]]
| |
| .
[ | |
Il 0.02 | 0.09 | -0.1 |lo.as | 01 | 0.2 | -0.1 0
fa €4 l\l[ : |
________ Fe——————————
| |
| b - - - . __
f V=1 ey-1 : 0.15 | 0.09 | 0.2 I-o.1 0.26 | 0.04 | -0.1 | 01 {_Column-based :
| | 005 | 0.1 | 0.a | 0.02 . |
fV ey { 0 0.2 [ 016 |0.04 | o. . . : | Row-based |

——————— — —

Full Embedding Search

Column-based Embedding Search
Row-based Embedding Search

Column & Row-based Embedding Search
Combination-based Embedding Search

Embedding Table

Meew

Number of Feature Values

Embedding Size
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I Full Embedding Search

* The finest-grained embedding dimension search over the original embedding table

* Search the optimal embedding dimension for each feature value

v Fully consider the impact of each feature embedding dimension on the prediction results

v High-frequency or low-frequency feature values can be assigned with different dimensions

X Search space is huge

X Hard to reduce the storage space

Embedding Table

Teew

Number of Feature Values

Embedding Size

Feature

Feature Embedding
1] T )
|| 01 [ o015 | 008 |02 | 0.12 | 0.08 [ 0.01 | 021
e e T R
1016 | 02 | 01 [loas [021| o |[013 ]| 02 I
| |
I T |
{023 | o [023[p036|-01 014|002 031]]
I ; |
| |
Il 0.02 | 0.00 | 0.1 |lo.15s | -0.1 | -0.2 | -01 0 |
|
J[ ___________________ >
.
| |
| }
[l 015 | 009 | 02 |l-01 | 0.26 | 0.04 | 0.1 | 0.1
| |
| [
|| o | 02 |o016 |0.04 | 005 | -01 [ 0a [002
\_ ) J

e ————— —
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Full Embedding Search-AMTL oo Q/'Sz} bk % |

HUAWEI

e Search space: d (d is the embedding size and V' is the vocabulary size)

 Twins-based architecture to avoid the unbalanced parameters update problem due to the different
feature frequencies.

* The twins-based architecture acts as a frequency-aware policy network to search the optimal dimension
for each feature value = relaxed to a continuous space by temperature softmax.

mz| 1 l 1 I 1 | 0 I 0 | Mask Generate

t; [ofo]1]o]o] s

>£z |0.1]0.0|0.7|o.1|o.2| Temperated

Softmax
Welhted Sum 1—q;
- s

M weight score
OW- uency

sigmoid(norm(q;))

User ID
|F'|| | Embedding

1
Feature Frequency
Dim Candidate Set
2] E E I H |
J
Feature Frequency
£

i e

dim: uniform assign dim: human design dim: discrete search dim:continuous adjustment €; | 1.4 | 1.8 | 0.
initial: random start initial: random start initial: random start initial: warm start Embedding Vector h igh

(@) Standard  (b) Rule-based (c) NAS-based (d) AMTL (Ours) i s mension
Embedding Layer

T T S ————————————————

Frequency value

e ——

Feature Value @ e.g. User ID:321

Learning effective and efficient embedding via an adaptively-masked twins-based layer. CIKM 2021. dem 2023
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} Full Embedding Search-PEP ay & W Iy

HUAWEI

* Pruning-based Solution by enforcing column-wise sparsity on the embedding table with L, normalization.
e Search Space: 2Vd (d is the embedding size and V is the vocabulary size)

 The learnable threshold can be jointly optimized with the model parameters via gradient-based back-
propagation.

dense sparse
11 d; min L, s.t. ||V||g < k,  NP-hard
v, [o[osfodlod]od] vi (R — (3 |
Vo IR Pruning . Y2 LT é R Soft threshold re-parameterization :
v PR e v = V = 8(V,s) = sign(V)ReLU(|V| <{g(s)).
Vi [-0.1f02 0.:5 0301 :‘gffigrfo'id': v@m 0:,5 odl o é min £(S(V,s),0,D). learnable pruniné;hreshold
% o sv, ) ¢

(Wsdm2023
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Full Embedding Search——Summary

Feature Feature Embedding
( ] )
f ey ||| o1 [o1s|oo0s |02 | 012|004 001|021
= = e — |
Il 016 | 0.2 [-01 [loas 021 | o [o0a13 | -02
f2 €2 |, 1 :
f3 e; : 023 [ o |o0.23 }o.as 0.1 [ 014 [ 002 | 031 | |
| ; !
I o. 01 |loas | 01 |02 |-01| o |
f4 ey \I[ 0.02 | 0.09 | -0.1 Io 15 | -0 _/l
_____ ———f——————————=
| I
| !
fr-1 ey_1 : 0.15 [ 0.09 [ 02 [l0a1 [026|0.0a | 01 [ 01
|
fv ey : o [ o2 [o1s6 {0.04 0.05 | 0.1 | 0.4 | o0.02
\_ ] J

~ |
| Column-based |

e !

VO ———

* Full embedding search methods aim to search the optimal embedding dimension for each feature
value, facing huge search space and impeding the search efficiency;

* To facilitate the search procedure, several approaches are proposed to shrink the search space,
which can be categorized into three kinds: column-based, row-based, and column & row-based.

(Wsdm2023
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I Column-based Embedding Search ay & W % |

* The search space of Full Embedding Search (PEP and AMTL) is highly related with the embedding size d.

* To reduce the search space, AutoEmb and ESPAN divide the embedding dimension into several column-
wise sub-dimensions.

Sub-dimension 1 Sub-dimension 2
Feature \ Feature Emlyxﬁ(
Embedd|ng Table f1 eq 0.1 | 0.5 | 0.08[}-0.2 [ 0.12 | 0.04 || 0.01 | 0.21
\ Aar | ] |
E x fz ez | 0.16 0.2 -0.1 I10.15 0.21 0 0.13 -0.2 |
| !
f3 e3 : 023 o |o0.23 }o.ss 0.1 | 0.14 || 0.02 | 031 | |
. !
! ‘ |
. . . . -0.1 |||lo. 01 | -0.2 || -0.
Number of Feature Values Embedding Size B e lj il Il Ol il Il Il N
_____ S e S
| .
|
f V-1 €y—_1 || 015 [ 0.09 | 02 }-0.1 0.26 | 0.04 || -0.1 | 01 {_Column—based :
fV eV 0 0.2 0.16 {0.04 0.05 -0.1 0.4 0.02 Ir— _R;“:l;ls_ed_ _:
7

VR ———

— — ——— — — —
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I Column-based Embedding Search-AutoEmb & ESPAN Iqm Q/'ga} 2 % |

* Reduce the search space by dividing the embedding dimension into several candidate sub-dimensions
* Dynamically search the embedding sizes for different users and items

v Better performance

v" More efficient in memory

————————————
\ @

( v f 1
0.23 | 1 | hidden layer M
1 I 1 | *
Ll 1 ;
2 0.2% ] } : | hiddenAZayer 1
= 1 ]—Emb_g [ I ,
021+ |——Emb_16 1
é {——Emb_128 : I [ m
4 R S T T L 20 b
I | 1 2 \ P 7
> ! | ! I e - O O i (i v
9 | : ! : T T Transform T T T
80.6@— " | 2] ... : \ il £ ... i
O | I \ ) _/
< : ] y : I v;
| |
0.6? ! — p : 5 : - —
N ! Frequency =\ ! AutoEmb & ESPAN

low-frequency high-frequency wsdm 2023
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I Column-based Embedding Search-AutoEmb oy Q/'g’;b N % |

e Search Space: From d” toad" (d is the embedding size and V is the vocabulary size, and a is the number of sub-dimensions for
each feature)

* Two controller networks to decide the embedding sizes for users and items via end-to-end differentiable
soft selection.

e Sum over the candidate sub-dimensions with learnable weights. (Soft Selection)

* The optimization is achieved by a bi-level procedure, where the controller parameters are optimized upon
the validation set, while the model parameters are learned on the training set.

te selection weights
u; aggfega N /A0 /*g\
[C¥1) o) kN
Hard Selection / E= &\ Output N "\T?/' '\%‘/

, - i Se—— Layer T
[ Transformed | e! | | e’ | | e | | softmax
| Activation : 5 7
| 1 .
! BatchNorm ! hidden layer M
1 1 Hidden A
: Linear Transform e e’ eV : Layers A
D e W -7 hidden layer 1

Embedding Lookup |} el | e ey T

embedding sub-dimensions \JW/ e popularity + context
AutoEmb Controller network
wsdm2023

AutoEmb: Automated Embedding Dimensionality Search in Streaming Recommendations. ICDM 2021. SN IR EEBESET AR



I Column-based Embedding Search-ESPAN ay & W % |

* Embedding Size Adjustment Policy Network (ESAPN) - RL (Hard Selection)

* Policy network serves as RL agents for users and items, which adjusts the embedding sizes dynamically.

» State: feature frequency and the current embedding size

e Action: enlarge or unchanged the embedding size

* Reward:
T e
R(u) g L(u) _ L Deep Recommendation Model
T z : t i —
; O
— : O »
t=1 5:::{;_.5_.8\8 g
= © O Hidden Hidden % o
users & user1 & user2 & userk | & user k+1 o8& i 8 ®) o T [layeri| ™ **° > llayerm| — | @ | — prediction |
. . . eeeRes . L EEERER S L e, HEEESE i jtem @ O :
items W item1 [ item 2 [ item k| [ item k+1 ] femb O — |8 | — |8 —|o g
3 3 o g
| Concatenation Multilayer Perceptron
& werc — [ pojicy | — emb size® Embedding e .
I8 item, — | Network | — emb size®™ Table i Policy Network ."
| e f
1 : large
; : frequency —> 7] O en
user, 50) | item; ; E Hidden Hidden S|
emb em b H —_— —)> smn —> —_—
! layer 1 layer m 3
l i current size —> 8 X |~
Reward . unchange
- - H I
Function | ©  Prediction «—— | Recommender : .
| Multilayer Perceptron

(Wsdm2023
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I Column-based Embedding Search——Summary

a & D

Feature Feature Embedding
f 1
fl el | -0.1 0.15 | 0.08 I 0.2 | 0.12 | 0.04 | 0.01 | 0.21
= == =
| 0.16 0.2 0.1 [l§.15 | 0.21 0 0.13 | -0.2
f2 €2 |, 1
f3 es : 0.23 0 0.23 } .36 | -0.1 | 0.14 | 0.02 | 0.31
| ;
f4 €y : 0.02 | 0.09 | -0.1 }n 15 [-01]|-02|-01] 0
=== e
| I
| ]
fV—l ey_1 : 0.15 [ 0.09 | 02 [lo.1 | 0.26 | 0.04 | -0.1 | 01
|
fV eV : 0 0.2 0.16 { .04 | 0.05 | -0.1 0.4 0.02
\ ]

— — —— — — —

VO ———

* Dividing the embedding dimension into column-wise sub-dimensions (e.g., AutoEmb, ESAPN) is conducive to

reducing the search space;

e Using multiply embedding tables to generate several embedding vectors (e.g., AutoEmb, ESAPN) may incur

obvious memory overhead, which can be avoid by shared-embeddings;

e Searching dimensions for each feature value will cause variable-length embedding vectors, which are hard to

store in the fix-width embedding table and reduce memory.

(Wsdm2023
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I Row-based Embedding Search

af & W

HUAWEI % I

 AutoEmb and ESAPN shrink the search space by dividing the embedding dimension into candidate
column-wise sub-dimensions.

* Group the feature values of a field based on some indicators (e.g., frequencies) and assign a row-wise
group embedding dimension for all the values within the group.

* The search space is no longer related to the number of feature values, but to the number of pre-defined

feature groups.

v’ Shrink the search space, making it easier for the search algorithm to explore satisfactory results

v’ Save the storage space physically

Embedding Table

Taewe

Number of Feature Values

Embedding Size

Feature

f
f2

fs
i B

Feature Embedding

Feature Group 1

|
I-O.Z

0.12

0.01

0.21

0.21

0.13

T

-0.1

0.02

— —— — — — — — —— — — — — — —— —— — —

[N ——

Feature Group 2

0.26

0.05

0.02

————— — — a—

e e — — —— —
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I Row-based Embedding Search-SSEDS

ay & g |

e Set the number of groups for a feature field as b = 1 and search a global embedding dimension for all the

feature values (field-wise embedding dimension search)

e Calculate the saliency scores for identifying the importance of each embedding dimension, which is

measured by the change of the loss value

ALij=L(VO1,6:D)-L(VO(1-¢€;)).0:D)

€ij € {0, 1}27’ n;xd

e Top-k scores can be retained according to the memory budget and the model will be retrained to save

storage and further boost the performance.

Prediction
layer

o e e mm mm Em mm e ) e

SSSSSS

€m1 €m3

(b) Single-shot Pruning

Single-shot Embedding Dimension Search in Recommender System. SIGIR 2022.

DU - )
————— ol il el b it toln

Input layer |
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Row-based Embedding Search-AutoSrh

« To balance the search efficiency and performance,

AutoSrh splits the features into multi-groups based on ™ g o Ovtaer
H H . Relational Representation
the feature frequencies or clustering. S 99. pro
* Feature blocking stage —— search space: from 2 (e.g. Wide&Deep, DeepFM) [ i )
into Zbd (where b is the number of groups) ,:;'::;‘_"_"_"_"_’:'_i'_"_"_:;:—'_"';]':;['_"_"_‘:'_"_"_i'_"_‘:_‘:;?"_-::::'_ -
. . . . | Output Embedding & 000--0 |000--0) |00Q--0O !
* Soft selection layer to identify the importance of each | e T T [ (;) ) !
. . . . ! : ' !
dimension in the feature embedding ! Soft Selection Layer @ (@009 (@e0-o (000-0 !
« To relax the search space to be continuous during the ! - | D | sotreatures | :
. . . . . i o | e “ew e ! I
search stage, a gradient-based bi-level optimization \ """ 000--0] - [©90 --0), ® Y
procedure is proposed Feature Embedding ¢ (O O O O =~ 000) (000-0)
Layer e Training data Validation data________
Search stage: & —e O et s | | vt %y () Eementuiso rocuct |
1 T 1 x o T T T T T T T T T T T T T T T T T T T T T

] n .o I’--I .
Derive stage: E/i,j _ Q, if |E; ;| <:€ . pre-defined threshold

E; ;, otherwise

-

AutoSrh: An Embedding Dimensionality Search Framework for Tabular Data Prediction. TKDE 2022.
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I Row-based Embedding Search——Summary

a & D

Feature

f
f2
f3
fa

fr-1
fv

* Row-based embedding search methods explore optimal

Feature Embedding

0.15 | 0.08

|
|—0.2

0.12

0.04

0.01

0.21

-0.1

1=
1

lo.15

0.21

0.13

0.23

-0.1

0.02

— e e — o —

0.26

0.04

0.1

~ |
| Column-based |

0.05

-0.1

0.4

0.02

e !

— — ——— — — —

feature values, shrinking the search space;

VO ———

embedding dimension for a group of

* In comparison with the column-based embedding search methods, row-based search methods
conduces to truly saving memory because feature values within a group are assigned with a
same embedding dimension, which can be stored in a fix-width embedding table.

(Wsdm2023
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I Column & Row-based Embedding Search

af @ |

* The column-based and row-based methods make different assumptions to reduce the search space from

different perspective.

e To further improve the search efficiency, several works combine these two methods and reduce the search

space significantly.

column-wise sub-dimensions
row-wise group embedding dimension

Embedding Table

Taewe

Number of Feature Values Embedding Size

7 7

Feature

fi
f2
f3
fa

Sub-dimension 1

Sub-dimension 2

\ Feature Embe/dd‘l(
A

Feature Group 1

-0.1 | 0.15 | 0.08 I-O.Z 0.12

0.04

0.01

0.21

pr—r— ——

0.16 0.2 0.1 |||o.15 | 0.21

0

-0.2

Feature Group 2

|
0.23 0 0.23 10.36 -0.1

0.02

0.02 | 0.09 | -0.1 |[[o.15 | -0.1

-0.1

RN ——

\

-0.1 | 0.26

-0.1

0.1

0.04 | 0.05

0.4

0.02

——————— —

e e — — —— — —
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I Column & Row-based Embedding Search-AutoDim IM Q%b W % I

* Pre-define several candidate sub-dimensions like AutoEmb. Output PS
(column-wise) Ve
 Set the number of groups b = 1 and search a global - = P
embedding dimension for all the feature values of the field,  cmponent
like SSEDS. (raw-wise) 9 9 9
* Search Space: a™ (a is the number of sub-dimensions for each Embedding
feature, m is the number of feature fields) Component
Featuregro 0 1 1.0 0 cr 0 1 0:
Fields Field 1 Field m Field M
A A A A
w0 & =
Features ; R
Cuser Item  Context Interaction

Goal:
Select optimal embedding dimensions for different feature fields automatically in a data-driven manner.

(Wsdm2023
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I Column & Row-based Embedding Search-AutoDim tqm Q’"’b ) % |

Two-stage framework

AV, U
s _ _ _ _ _
_/ _/ _/ _ _/ _

A N 7' 1 , A X
0.7 0.3 0.2 0.8 Weights 06 0.4
/ \ / \ / \
Transforms
T T T ______ T _________ T TTransforms l ________ l _________ !
\ / \ / \ Embedding Embedding T e T T
pr el S o /. LOOKUD Lookup; - - - - - ool
10 0 1 e+ 1.0 0 +++ 0 1 0! 10 0 1 1 0 o 1 0
Field 1 Field m Field M Field 1 Field m Field M
(a) Dimensionality Search (b) Parameter Re-training

* Dimensionality search stage: find the optimal embedding dimension for each feature field
* Parameter re-training stage: select the optimal embedding dimension and re-train the model parameters

(Wsdm2023
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I Column & Row-based Embedding Search-AutoDim tqm Q%\ @@ % |

Dimensionality search stage

U U
_/ _/ _/ _/ _/ _/
_/ _/ _/ _/ _/ _/
A X 7 L A X
— 7 = g3 e =) g =) g \VEGhtS 0T = W = =
( / \ / \ / \
Transforms
. I T T T _____ T _________ T TTransforms l l !
candidate I ; """""
- i - o N e ! e WEMbeddinges  Embedding B S S R S
SUb embeddlngs R N __&_\ _______________________ \ seee e Lookup Lookup, - ----- T __________________________ T __________________________ T
10 0 1 1.0 0 0 1 o0 10 0 1 1 0 o 1 0
Field 1 Field m Field M Field 1 Field m Field M
(a) Dimensionality Search (b) Parameter Re-training

* Transform layer: map the embeddings into a same dimensions
* Batch Normalization layer: unify the scales

(Wsdm2023
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I Column & Row-based Embedding Search-AutoDim tqm Q%\ @@ % |

Dimensionality search stage

AV AV
/ _______________ \\
l -/ e e I 7 e e
I
|
I _ _ _/ I _/ _ y -
I
I #{>
: I
weighted sum o7 "s 0 os| weights |0 "4 I
| / \ / \ / \ ot
ransrorms
\ /
:_T: —_— - - —,__T_T__—___—,___—_T___—, — dFaneforms | .
\ / \ /" \ Embedding  Embedding T e T T
pr el S o /. LOOKUD Lookup; - - - - - ool
@O --- O --- OOV ‘0 0 1 **+ 1 0 0 - o 1 o0
Field 1 Field m Field M Field 1 Field m Field M
(a) Dimensionality Search (b) Parameter Re-training

AutoDim searches the dimensions in a soft and continuous fashion via the Gumbel Softmax

* The architecture weights are optimized upon the validation set

e Others model parameters are learned upon the training set WSdm2023
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I Column & Row-based Embedding Search-AutoDim

Parameter re-training stage

AV, U
_/ _/ _/ _/ _/
_/ y = _/ _/ _/
' A4 Y x 7 _ A4 )x
0.7 0.3 0.2 Weights 0.6 0.4
4 , 4 4 o Ti forms|
rans
2-d 3-d
T T T T TTransforms D T C
/ \ : INCx ) AEmbedding  Embeddilg A ) U S
2 __________________________________ 3"d ________ 2_& ... Lookup Lookup, - - - - - - R
0 0 1 s 1 0 0 < 0 1 0 00 1 cee 1 0 0
Field 1 Field m Field M Field 1 Field m

(a) Dimensionality Search

(b) Parameter Re-training

The optimal embedding with the largest weight is selected for each feature field

Retrain the model parameters to obtain the final model

(Wsdm2023
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I Column & Row-based Embedding Search-NIS IM ¢

* NIS also reduces the search space from both row-wise and column-wise perspectives

(
I 0.1IM x 512 |
head = Head Feature

* More data, more information
* larger embedding size is reasonable

0.4M x 128
Tail Feature

* Less data, less information
* Small embedding size is enough

1.2M x 64

tail

NIS: Neural Input Search for Large Scale Recommendation Models. KDD 2020.

(Wsdm2023

SINGAPORE FEBRUARY 27 - MARCH 3



I Column & Row-based Embedding Search-NIS oo Q/'g‘/b

S

HUAWEI

% |

. /v[ Main Model }\
RL-based AutoML solution / \
* Main model is the deep recommendation model Sample ,\ Rewafd{
* Controller learns to sample embedding dimensions that \\[ }/
. Controller
generate higher reward.
° . _ Mg
Reward: R = Rgp— AxCy Zl,pxdpgc S5 v, < di, <€
FeF FeF i=1

optimization objective
training cost

multiple embedding blocks one choice (7M,192)  a sequence of choices  [(3M, 192), (7M, 64) ...]

64 64 64 64 64 64 64 64 64 64 64 N 64

Head items ™ | | | | | | | | m | | | | | Il || I || Nt ]

2M 2M 2M

2M 2M 2M Pa %

2M 2M 2M

=
Tail items 3m M P M
Single-size Embedding (SE) Multi-size Embedding (ME)

Embedding Blocks: discretizing an embedding matrix of size v x d into S x T sub-matrices

(Wsdm2023
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I Column & Row-based Embedding Search——Summary IM Q%S ) % |

Feature Feature Embedding
f T
f eq| |i| o1 | 015 | 008 | fo2 | 012 | 0.0a [ 0.01 [0.21
= , — |
[l 016 [ 02 [ -01 |l§as [021| o |o0a3 | -02
f2 ez |, 1 :
f3 e3 : 023 | o |o0.23 } 36 | -0.1 [ 014 | 0.02 | 031 | |
| : |
' | |
f4 ey : 0.02 | 0.09 | -0.1 l-.15 010201 0 |
=== e -
| |
| —
f V-1 ey_1 : 0.15 | 0.09 | 0.2 { 0.1 | 0.26 [ 0.0 | -0.1 | 0.1 Ir_Column—based :
I ] (o ————— |
fV ey l o | 02 |06 404|005 |-01| 04 |o0.02 | Row-based |
) ————————

* Although it is theoretically optimal to search the suitable dimension for each feature value, it poses great
challenges to efficient search algorithm. Instead, shrinking the search space in an appropriate manner may
result in better performance;

e Reducing the search space from both row-wise and column-wise perspectives attributes to reducing the
search space and achieving better results;

* The evolution of search space from detailed to abstract can lead to higher efficiency.

(Wsdm2023
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I Combination-based Embedding-AutoDis af & W @|

Besides searching embedding dimension dynamically for each features, learning embedding via
combination is also a trend for feature representation learning

Existing methods for numerical feature representation have some limitations:
1. Category 1: No Embedding

* Low capacity: difficult to capture informative knowledge of numerical fields.
*  Poor compatibility: difficult to adapt to some models (e.g., FM).

2. Category 2: Field Embedding | chid 0 |
teenage 1~ |,
* Low capacity: single uniform field-specific embedding. : Age: 18 mid_age 0 : :
Height: 173.8 older 0
| I 0 I
: Phasel: Discretization : Phase2: CTR Model Training :
3. Category 3: Discretization Limitation 1: TPP | | , |
o /tg_enagLK_T\ mid-age |
*  TPP (Two-Phase Problem) Limitation 2:63D ] - :(1@ 1. 404y s
«  SBD (Similar value But Dis-similar embedding) Limitation 3: DBS S—— -

Discretization Rule

* DBS (Dis-similar value But Same embedding)

(Wsdm2023
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AutoDis: An Embedding Learning Framework for Numerical Features in CTR Prediction. KDD 2021.



I Combination-based Embedding-AutoDis oy Q@b g% % |

AutoDis is a numerical features embedding learning framework with high model capacity, end-to-end
training and unique representation properties preserved.

Aggregation Function Meta-embeddings

~
~ ~, ej =|f (7" (x4 ME,)

/K
- & | .. —
eature . . . .
Interaction Automatic Di Fcretlzatlon
_ aa &L 87 ) v —
=7 j
1 " = 0
Embedding< EIQ- Vieta-Enbeddings < NI rsgregation Function |
...... F
g AutaoDis 0100000| \-. f] .t. ) ht
Input { Ag:: 18 v P f}.lf .... Ltion welignts
Automatic < /\/ """ /\/
Discretization
& Sa Sa | S Sa S
controller L
W
Input
Age=18
A
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I Summarize DRS Embedding oy @ Ve % |

Method Column-Wise Row-Wise Search Space Multi-Embedding Search Algorithm Memory Reduction
AMTL X X d” X Gradient X
PEP X X 2vd X Regularization X
AutoEmb v X dv v Gradient X
ESAPN v X av v RL X
SSEDS X V omd X Gradient V
AutoSrh X v gbd X Gradient v/
AutoDim v/ v/ a™ X Gradient v/
NIS v v/ ab or b® X RL v/
RULE v v/ 2ab X Evolutionary v
ANT - - 2kV X Gradient v
AutoDis - - 2kV X Gradient v

* d is the embedding size, VV is the vocabulary size, m is the number of feature fields, a is the number of sub-dimensions, b is the
number of feature groups, k is the number of meta-embeddings. (a < d, b<<V)

(Wsdm2023
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I Coffee Break afy & Ve %

We are hiring !

e

Wengi Fan Xiangyu Zhao
Huawei Noah’s Ark Lab &% WSDM;%*?‘EE*SQE The Hong Kong City University of
Polytechnic University Hong Kong

A Comprehensive Survey on Automated Machine E E
Learning for Recommendations. :
https://arxiv.org/pdf/2204.01390 [=]
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* DRS Interaction Components
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* Interaction Block Search




I Background oy ég’,b S% % |

Effectively modelling feature interactions is important.

Loss Function . . .
Output Layer gé L !30th low-order and high-order feature interactions play
— S N important roles to model user preference.
0.0 O = People like to download popular apps = id of an app
Feature Interaction Layer O?O may be a Slgnal
@@ ----------- @ =  People often download apps for food delivery at meal
\_ L 2T S B time = interaction between app category and time-
o e s R stamp may be a signal
- S () O ama E o . H H
Feature Embedding Layer OOTOObOTO --------------- OOTOO = Male teenagers like shooting game - interaction of app
category, user gender and age may be a signal
Lofol-{1]  [of1]-]o] 1]of-]o]

= Most feature interactions are hidden in data and

difficult to identify (e.g., “diaper and beer" rule)
Input Feature Layer

(Wsdm2023
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I Background

The challenges of modelling feature interactions:

1) Enumerate all feature interactions
e Large memory and computation cost
 Difficult to be extended into high-order interactions
e Useless interactions

2) Require human efforts to identify important feature interactions

* High labor cost

* Risks missing some counterintuitive (but important) interactions
3) Require human efforts to select appropriate interaction functions

* Human expert knowledge
* Global interaction function for all the feature interactions

(Wsdm2023
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I Background o

Automatically select important feature interactions with appropriate interaction functions

Interaction Block
Search ® @ ® ®2® ©) ® X P
? OB
®3® ® ® EB o 0
Feature Interaction . @ 1® ) )
Search Second-order Interaction High-order Interaction
<e1,ez> <e1, ev> <el, ez, ev>

CIEISI RS CIEISIA R CIEISID)

Interaction Function |

«ch _\_:'_"_";- ——_--"""_________
Sear fm————— :,__,-,/_-;——_"_____ e e ——————— ‘—\\T-ﬁ-——————\l e
| aa
€4 e, ey

AutoML for feature interaction search:

1. Feature Interaction Search —— search beneficial feature interactions
2. Interaction Function Search —— search suitable interaction functions
3. Interaction Block Search —— search operations over the whole representation

(Wsdm2023
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I Feature Interaction Search af] & ¥ % |

Interaction Block
Search ® @ ® ®2®® ® ©
®3® ©) ® @ 1 ®0®
Sp)

V4 .

\  Feature Interaction
|

1

Second-order Interaction High-order Interaction
Search

1
I
<eq ey> <ey eyp> <ey, ey ep> h

(® ® O DR CEISI) R CYSTY

Interaction Function |

Search T e .
r______ :':f-""_.;______ _7_?‘._____________A\_,__‘P'______\ e
| |
I e l—

AutoML for feature interaction search:

1. Feature Interaction Search —— search beneficial feature interactions
2. Interaction Function Search —— search suitable interaction functions
3. Interaction Block Search —— search operations over the whole representation
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Feature Interaction Search-AutoFIS ay & Y 5|

HUAWEI

* Not all the feature interactions are useful.

 |dentify such noisy feature interactions and filter them.

A\, Output
l__/l_\__{
|
=== | mee
A\ output , | !
S Sttt
| | we : |
________ . | S [ —
— = —— I . Fe———— ] .‘::::i::'__"—_r:;‘__'__\;? ,.:/_._7__] .
__‘J' Embedding :l___ __‘__‘H____ ‘____| _______ “__‘__‘ | Embedding
I 1 1
nput | 01 -G8 G0 179 -~ O ~Q | Input
Field 1 Field 2 Field m Field 1 Field 2 Field m Field 1 Field 2 Field m
(a) FM (b) DeepFM (c) IPNN
AutoFIS: Automatic Feature Interaction Selection in Factorization Models for Click-Through Rate Prediction. KDD 2020 @fd\
WsOoOma2023
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I Feature Interaction Search-AutoFIS

e Search Stage
e Detect useful feature interactions

* Retrain Stage
 Retrain model with selected feature interactions

RRRRRRRRRRRRRRRRRRRRRRRRRR



I Feature Interaction Search-AutoFIS ay & W S5

Search Stage:

e Gate for each feature interaction
* Huge search space ZC%n (m is the number of feature field)
 To make such process differentiable, AutoFIS relaxes the discrete search space to be continuous, by
defining architecture parameters a.

e Batch Normalization to eliminate scale coupling
* Using GRDA Optimizer to obtain stable and sparse architecture parameters

m m
" 7~ 1
IautoF1s = (w,x) + o (e, ej) ' | Next Layer
J I /
i=1 j>i “ft—————"1"
) Selection Gate
Indicatora=0or 1 .
a(1,2)| X (1,m) @ (m-1,m»_ Architecture Parameters
Retrain Stage: N A A Batch Normalization
A A A
* Abandon unimportant feature interactions PO 00 .. €< Interaction
e Retrain model T T 1 —
: | Embedding
I

"Wl &V ‘3
SINGAPORE ~ FEBRUARY 27 - MARCH 3



I Feature Interaction Search-AutoGroup ay & W @|

The limitation of AutoFIS:

 When searching high-order feature interactions, the search space of AutoFIS is huge, resulting in low
search efficiency.

Solution of AutoGroup:

* To solve the efficiency-accuracy dilemma, AutoGroup proposes automatic feature grouping, reducing
p
the pth-order search space from 2Cm to 29™ (g is the number of pre-defined groups)

AutoGroup: Automatic Feature Grouping for Modelling Explicit High-order Feature Interactions in CTR Prediction. SIGIR 2020 dem
2023
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Feature Interaction Search-AutoGroup oy & W

Feature Grouping Stage:

MLP A

Interactio -

- ——— -

Automatic |
Feature Grouping

"\, Output
& ... =& Each feature is possible to be selected into the feature sets of each
o ... Z 2z order.
el e qﬂ?order . HE]. € {0,1}: whether select feature f; into the j* set of order-p.
G 4 Ig\
- 91\ To make the selection differentiable, we relax the binary discrete value
g ok to a softmax over the two possibilities:

I

L 1+exp(—afj) L 1+exp(—afj)

p
a-1?).

To learn a less-biased selection probability, we use Gumbel-Softmax:

loga, + G
—p eXP(—g ; )
\ (l'[i ) = where o0 € {0,1}.
I N loga,, + G,,
: Z016{0,1} EXp( T )
I 1 exp(—afj)
Learnable Structure | 0‘0 = D a =
B L+ exp(-a;)) 1+ exp(~af))
! G, = —log(—logu) where u ~ Uniform(0,1)

Trainable Parameters: {afj}

Field 1 Field 2 Field 3 Field m
wsdm2023
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I Feature Interaction Search-AutoGroup

— o ——

Interaction Stage:

MLP

&4 &z &= ...

"\, Output

& & &

. t
1" order p™ or der q™" order
R R B '

/ />Pl oduct at p%m
=2 T

gk,
7

Automatic |
Feature Grouping

Input {

________

Learnable Structure
—: connected
: disconnected

Field m

Field 1 Field 2 Field 3

Feature set representation:

b _ p
gf—Zwi “

b
€S’
fi S]

s}’: the jt* feature set for order-p feature interactions.

e;: embedding for feature f;
wf: weights of embeddings in feature set s?.

Interaction at a given order:
« The order-p interaction in a given set sjp IS

7
J

(@ = > (we) €R p>2
f,-€sjl.)

gfeRk.

p=1

(Wsdm2023
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I Feature Interaction Search-FIVES oy Q’,;z} 8 @ |

HUAWEI

The limitation of AutoGroup:

* Solve the efficiency-accuracy dilemma via feature grouping

* |gnore the Order-priority property
» The higher-order feature interactions quality can be relevant to their de-generated low-order ones

Solution of FIVES:

* Regard the original features as a feature graph and model the high-order feature interactions by the multilayer
p
convolution of GNN, reducing the pth-order search space from 2¢m to om*,

* Parameterize the adjacency matrix and make them depend on the previous layer.

\

e G e crossmg crossmg crossrng

original features 2- order features 3- order features

FIVES: Feature Interaction via Edge Search for Large-Scale Tabular Data. KDD 2021 dem 2023
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 With an adjacency tensor A, the dedicated graph convolutional operator produces the node
representations layer-by-layer. For the k-order:

H

[

I Feature Interaction Search-FIVES oy &

nlgk) _ plgk) 5 nlgk—n

where plgk) = MEANj {anﬁ.o)}.

k
AN =1

* The node representation at k-th layer corresponds to the generated (k + 1)-order interactive features:

(k—1)

I

n'") = MEAN

(0)
]|A§’];)=1{anj jon

=~ MEAN(Cl,...,Ck) |A(]) :1 ]:1 k{ﬂl ® ¢t ® .f‘ck ® ﬁ}a
l,Cj s geeey

(Wsdm2023
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I Feature Interaction Search-FIVES ay & W S5

* The task of generating useful interactive features is equivalent
to learning an optimal adjacency tensor A, namely edge search.

* The edge search task could be formulated as a bi-level
optimization problem: Feature

Graph A i A®@ H AB) |
s.t. G)(A) — arg melnL (DtrainlA» 9) ni Ny i ng Ny P N3 4_ Ny
* To make the optimization more efficient, FIVES uses a soft et i L
A®) for propagation at the k-th layer, while the calculation of N ! S | E“TEZ EEEEE ﬁ
A®still depends on a binarized A~D: Ao s | 1 A®k o | Limzij
melE Lo WeR ® A

A®) & (DO-D) ™ p(4%-D) () @

Degree matrix of A~1) l Interactions at k-th layer
Binarize the soft Ak—1)

(Wsdm2023
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I Feature Interaction Search——Summary ay & W %|

Interaction Block
Search ® @ @ ®2®® ® ¢
- Eae o8
S [

[ Feature Interaction . . . |
| Search Second-order Interaction High-order Interaction |
| <el, 82> <el, ev> <el, 82, eV> 1
! I
X RO B OB - (DO D X
____________ reEm-Tsmsmsm=F== — - T T T T == el
Interaction Function |
Search T e

(==

|

e e el e e I ———

€1

* Feature interaction search based methods focus on searching beneficial low-/high order
interactive signals for factorization models;

* For high-order interaction search, different approaches are proposed to reduce the search space,
such as feature grouping, hashing, tensor decomposition, and graph aggregation;

* Gradient-based search algorithm is dominant in this task due to the high efficiency.

(Wsdm2023
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Interaction Block
Search ® @ 2
- @ "

Feature Interaction

Search Second-order Interaction ngh order Interaction
——————————— <ey.ex> _ _____<epey>_ _____<eu.e,ey> _ _ -

Interaction Function

\ Search <
_______ 'f o N .
|

N o o e — — — — — — — — —— —— — ————— ———— ——————————————

:‘ [@@@@J [@@@@] [@3_@9@@]

AutoML for feature interaction search:

1. Feature Interaction Search —— search beneficial feature interactions
2. Interaction Function Search —— search suitable interaction functions
3. Interaction Block Search —— search operations over the whole representation

(Wsdm2023
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Interaction Function Search-SIF

al & e 5|

* Generate embedding vectors for users and items

* Generate predictions by an inner product between embedding
vectors

* Evaluate predictions by a loss function on the training data set

Interaction function: .
How embedding vectors interact with each other? il
IFC operation space predict time | recent examples
(ui,v;) inner product | O(m + n)k) O(k) | MF [28], FM [37]
U —v; plus (minus) O((m + n)k) O(k) CML [19]
human-designed max (u,, v,—) max, min O((m + n)k) O(k) ConvMF [25]
o ([ui: v ,-]) concat O((m + n)k) O(k) Deep&Wide [9]
o(wov;+Hluzv|) | mult,concat | om+nk) | O®) NCF [17]
U *v; conv O((m + n)k) O(klog(k)) ConvMF [25]
uev; outer product O((m + n)k) o(k*) ConvNCF [16]
AutoML SIF (proposed) searched O((m + n)k) O(k) —

Collaborative filtering

M

items

-
' il

o R

e —

1

Is there an absolute best IFC? : NO, depends on tasks and datasets [']

Efficient Neural Interaction Function Search for Collaborative Filtering. WWW 2020

b lbebe|be b

(Wsdm2023
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I Interaction Function Search-SIF

@ e o5

e SIF selects different interaction functions across different datasets.

IFC operation
(i,v)) inner product
U -V plus (minus)
max (u,—, v,-) max, min
([ui:v)]) concat
(u, Ov;+H|u;;v;| multi, concat
U * v, conv
Ui®v, outer product

element-wise

————,————

L[

user vector: u;

(L[]

item vector: V;

(Wsdm M2023
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I Interaction Function Search-AutoFeature ay & W

HUAWEI

<4

* Not all the feature interactions between each pair of fields need to be modeled.

* Not all the useful feature interactions can be modeled by the same interaction functions.

Prediction ?

Fully Connected Layers

Hidden O
State
FC layer
N\
Y Y
F1 F2 || F1*F2

Sub-net 1 Sub-net 2 Sub-net i
m - , T . |
app_id app_category banner_pos app_id i [ Embed 1 ] [Embed 2] Emll-:weddmg me
(@ (e) {Silusb i Gl
—
7
= [ Feature 1] [ Feature 2] Feature N
<
| - e amm N - -
device_ip device_id mday c21 site_id banner_pos wday

AutoFeature: Searching for Feature Interactions and Their Architectures for Click-through Rate Prediction. CIKM 2020

(Wsdm2023
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I Interaction Function Search-AutoFeature oy @5 . % |

AutoFeature automatically designs a different sub-net for each pair of fields.

* Train a Naive Bayes Tree to classify different network structures, where the tree tends to classify the
most well-performed network into the leftmost leaf subspace.

« Sample leaf nodes from these leaf subspaces based on the Chinese Restaurant Process (CRP).

i <
.v, ov}
th

15t order 31 order p! order

® 6 OO0 OO 6@ OO0 m-

Prediction

Nl e

»Q K

L/
~ DNN

" Exarmle sub-network

2nd order

= = Embedding
o0 { X J e [ X Layer

v
! V2 A embedding lookup e One-hot
ne-ho

1 01 0 0 1 L @0 0 features

Feature 1 Feature 2 Feature f

(Wsdm2023
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Interaction Function Search-AutoFeature oy Q%’ . % |

* The top two samples with the highest accuracy will be picked to perform a crossover operation at the
midpoint of the architecture string, which is followed by g mutations.

* Check if the resulting architecture belongs to the subspace represented by the leaf node. If this is not the
case then the procedure is repeated.

* The whole search procedure continues until the desired accuracy is achieved or the maximum number of
steps is reached.

Learn the Tree Select Leaf Sample from Leaf Update Node Population
124,000,333 0.0
S PO Kle) = nic/ N+ & (R)p-0U tach_srin cerecr
naiiem leaf_id ~ CRP(c)

431,133 20008 0M
L344,08,.3,11 0030

Di=Dy arch_string,accuracy}

324300,..11.3 o

431133, 000 0m
—134400,..131 00
r= il

144000,..,222 0.6
1208, 333,100,888 0361
244425,..0,1,1 0.0 244400,..,1,1,1 0008

) () Train ‘arch_string’
; >
Get ‘accuracy

124020, 111 002
1,3,3,309,...0,00 o.M
DI:M.‘.A,S,D...J.:,: eno

"

© 9

2}.4,‘4040_...‘\.'1,! 0720 ] Ir n m
T DIr=Dir| {arch_string, accuracy}
u i a ™ Algorithm 1: Sample(ir‘,DM — arch_string = [4,3,0,1,0,...,4,1,0]
124000111 8.082 234400111 070 . _5A4200,..233 0.982
D=} 88 0o am DIr=ia1isaaa o7m D=431333 Tk S Drr=Piaia ks a2 * Update ¢
A !
————— Learn ------------------------oooooooooooooooo oo - NAS search---------
(K- v - ' \
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 The interaction functions of SIF and AutoFeature are artificially specified, which requires high
dependence on domain knowledge.

Interaction Function Search-AOANet ay Qf'?"}

H

[

 AOANet proposes a generalized interaction paradigm by decomposing commonly-used structures into
Projection, Interaction and Fusion phase.

. L3
Interaction ) T
Output | : OO o e . Im B
Zij=(ei®e;) OW, | S e
...... <«
* Fusion | Cm ) e aorwontayerz A \
P = hT § ( A ) Fusion [ mhii ] [ i ] [ Fusiong ]
- Lj=L) 7> b L . T
i 5| | G T - Gt |
.- *
operation related models constraints on W partial fusion setup b [ H | oord 1 R o i R
ulo FM,IPNN W = diag(1,...,1) >4, Zii L Zusn Zuy 1::1:&11: P el | ‘
u®u NFM,xDeepFM W = diag(1,..., 1) [Zl,l, cosZiiy e ,Zd,d]T Interactioné { Fusions ] { Fusion, J { Fusions ]
u®v OPNN ViVj, Wi j =1 - | P P - , , o
a(uTU) FwFM W = diag( a. ... (Z) Zd Z: : Generalized Generalized ‘Interacticml’ ‘Interactitm,l s ‘Interadions}
2 i=1“bt 7 ! Interaction Interaction : \ FEE J J .
a(u®o) AFM W = diag(a, ..., a),a = MLP(Z) [Zl,l, coisZiy e ,Zd,d] """"""""" p;;,;;,{o'n'.;;e}'""""""""f """"""""""""""
- T = . T T e .
(u®v)wD DCN VleVk, W,J = ik [Z, Zi,l ..... Zi Zi,j ..... Zizi,d] r | X E E 5 | | I l | | | | | I E ! A DF:I?:] EEEE o b E_
D . . nput | P , | aw Features E
uo (W U) DCN-M - [Z] Zl:] """ szf;-] """ Z] Zd,j] L :;li ________ o %’_1"""41.\]_ ______ 1: ? ________ : E [ O @€ O O @ O . ® O ] é
self-attention Autolnt ZJ = (q®k/) oW, W = diag(1,..., 1) (—€E ) R LT EETEEEETEEREE R R g

Xj e z{_‘. (b) Generalized Interaction Network(GIN)

(a) Structure of interaction and fusion layer.

Architecture and operation adaptive network for online recommendations. KDD 2021. m
wsdm2023
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Interaction Block
Search ® @ @ ®2®® ® ¢
@ e 68—
0,0

Feature Interaction

Second-order Interaction High-order Interaction
<el, 82> <el, ev> <el, 82, eV>

QDO B -
Interaction Function | —

I Search o~
I f"““é: 3

: |

! |

e e s s — — — —— — ——— ————— ——— ———— — — — ——— —— —— ———— ————

Search

* Although searching appropriate interaction functions for different feature interactions helps to

improve accuracy, the introduced cost is higher, which hinders the application in high-order
scenarios;

* Generalized interaction function search (e.g., AOANet) is more efficient than searching over

human-designed search space (e.g., AutoFeature), providing a promising paradigm for high-
order interaction function search.

(Wsdm2023
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I Interaction Block Search

- e R Rm R M e REm R M R REm R M e REm R M e REm R M e Rm R M e e e e e oy,

I
1
: Interaction Block
I Search ® @ .
1
Second-order Interaction ngh order Interaction
<el ez> <e1 ev> <81 82 ev>

2 IS @J - ®60 @] ___[®_@ Q O

Interaction Function R J—
Search i
[t ===
|
|

N o o e e i — — — — — — — — — — — — — — ———— — —— —— ——————————————

\

Search

AutoML for feature interaction search:

1.
2.
3.

Feature Interaction Search —— search beneficial feature interactions
Interaction Function Search —— search suitable interaction functions

AY

e - - -

Interaction Block Search —— search operations over the whole representation

(Wsdm2023
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I Interaction Block Search-AutoCTR

Hierarchical Search Space

* Properties: functionality complementary, complexity aware, ...

v’ Inter-Block: MLP block, dot-product block, factorization-machine block, ...

v’ Intra-Block: Block Appendant Hyper-parameters

Virtual
Blocks

8 O o

| Inner products |

eooe 000) - - -

N T~

-

| Addition |
/

[ Addition | | Inner products |

oo e 000) - - -

N\

~

J

Towards Automated Neural Interaction Discovery for Click-Through Rate Prediction. KDD 2020
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I Interaction Block Search-AutoCTR oy Q/";P Ve @ |

Search space construction
* DAG of virtual blocks and grouped feature embeddings

e Both block hyper-parameters (Intra-Block) and connection among blocks (Inter-Block) are to be
searched

J

Dense feature
concatenation

-@3-
- - |Linear —>@
) Dot-
S f t product
parse teature —

embeddings

A

— J7E— @
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I Interaction Block Search-AutoCTR

Multi-Objective Evolutionary Search Algorithm

-

\_

O,

o« e

®

All the Explored Architectures

.(.\ @/%
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I Interaction Block Search-AutoCTR

Multi-Objective Evolutionary Search Algorithm

4 All the Explored Architectures
O.
e
. ©

Age < threshold
O.
@ O ©/© \©
®
Multi-Objective
Selection
O.
@ O @/© \©
Survivor ®

selection New Population

S
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I Interaction Block Search-AutoCTR

Multi-Objective Evolutionary Search Algorithm

4 All the Explored Architectures
O.
e
. ©

Age < threshold
O.
@ O @p \©
®
Multi-Objective
Selection
O.
@ O @/© \©
Survivor ®

selection New Population

Rank-based

Sampling

"

Parent
selection

(Wsdm2023
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I Interaction Block Search-AutoCTR

S S 5|

Multi-Objective Evolutionary Search Algorithm

-

\_

All the Explored Architectures

. .{.\ @/%

Age < threshold

e

Multi-Objective
Selection

Y

Survivor
selection

@/©\@

New Population

Guided
Add O mutation
Back @
Learning-to-rank
Guider
Search
AN O
Loop @® @ ®
@
Generate
Neighbors
Rank-based ﬁ
| \© Parent
Sampling selection
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I Interaction Block Search-AutoPI

k2 d

Search Space

* The interaction cell formulates the higher-order feature interactions
* The ensemble cell formulates the ensemble of lower-order and higher-order interactions

I:I Intermediats nods ® Convolution @ Concatenation

Qutput node @ Interactive Operation — Fixed Connection

@ Input ncde
High-order Origin
Featuras Embedding
r--T---------j-----
(s) (&)

@ O

3

| SR ) A —

Ensemble
Featuras

Prediction

S

T

- - Searchable Connection

Origin
Embedding

0000 - 0000 - 0000 | 0000 - 0000 - 0000 |

Embedding For Low-order Features

A General Method For Automatic Discovery of Powerful Interactions In Click-Through Rate Prediction. SIGIR 2021

Embedding For High-order Featuras

High-order
Featuras

« Skip-connection!”

Er el Oskip(E) =Ec Rmxk

« Self-attention!3)

| . Res _Res Res mxk
F' = [e]",e3%,---,en"] €R

» FC Layer

E' =e-Wge

« SENET Layerl?

/ ! ’ / mxk
E = [a1 -a:l,a2-a:2,---,am-:cm] €R

« FM Layer

p={(=- zj)}(iJ)CR,
st. R; = {(ivj)}i€{l,~--,m}JE{l,--~,1n},i<j

« 1D Conv

{C(i) € Rlxlxm}

ic{l,--;m}
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HUAWEI

Search Strategy
e Continuous relaxation

£03) (E®) 0
0 IR -
FoAE ; il Lt Bl o\ A TN ey
/s 5\
1 ' 2 T @ ' e // : \\ ‘\
T [ ; g %\ 8 \ . LS. |/ SR A
\ | ! \ ! -
\ ,8(0 3) ’ & iolm(') °suo() orc(-) | opm(-) '
\\\ : I'// @\ 2 ’@< ‘\ “ : : /.
! % / 3) / g
B(l-‘s) S - ,// ﬁ(2.3) \\ J af'(:ﬁ) \\ ()’(7(::‘)‘ \\ ll // QL?'(") ,/ as'(:‘g)
/ . Y \ ’ S ?
i o’ PO o Nl»¥ _.-°
- - Sae .Y I
Softmax(-) Softmax(-)
3
4 3

Continuous relaxation visualization

By introducing the operator-level and edge-level architecture parameters for
continuous relaxation, a differentiable objective function will be obtained:

miﬂn Cva[ (wi'(a’ ﬂ)s a, ﬂ)

s.t. w*(a, p) = argmin,, Lin (W, @, f) m
wsdm2023
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1 Interaction Block
" e S, e
&.®

Feature Interaction
Search

/
1
|
1
1
1
|
1
1
1
|
1
1
1
|
1
1
1
|
1
1
1
|
1
1
1
1
1
1
|
1
1
1
|
1
1
1
1
\

Second-order Interaction High-order Interaction
<el, 82> <el, ev> <el, 82, eV>

(® XS] | - (@D B @_@ Q ®)

Interaction Function | i
Search el
(g ==
|
|

e e s s — — — —— — ——— ————— ——— ———— — — — ——— —— —— ———— ————

* Modeling overall high-order feature interactions over the whole feature sets implicitly can
significantly shrink the search space in comparison with the explicit high-order interaction
function search, making the search procedure more efficient;

* Interaction block search based methods with more abstract search space may become
mainstream gradually due to its efficiency.

(Wsdm2023
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I Summarize DRS Interaction

Method Search Category  Search Space Order Search Algorithm

AutoFIS Feature Interaction 2Cm second-order Gradient
AutoGroup Feature Interaction 29™m high-order Gradient
PROFIT Feature Interaction mR high-order Gradient
FIVES Feature Interaction 2m’ high-order Gradient
Lo-SIGN Feature Interaction om’ second-order Gradient
BP-FIS Feature Interaction u2Cm second-order Bayesian
SIF Interaction Function cl second-order Gradient

AutoFeature Interaction Function c"nCh, second-order Evolutionary
AOANet Interaction Function ~ 2/(/) pairs| high-order Gradient

AutoCTR Interaction Block cCn high-order Evolutionary
AutoPI Interaction Block cCn high-order Gradient

* m is the number of feature fields, p is the order, g is the number of pre-defined groups, n is the number of pre-defined bolcks, c is
the number of candidate interaction functions.

SINGAPORE
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I Background

Loss Function !

’_'_:@Zf@ﬁfi}’_:@f_ﬁ
10000 (0000 - 10009 ;
¢ A A
0 Ol-- 1 0 1 -1 0 1|0 0

* Model training:

Searching for architectures related to model

training

 Comprehensive search:
Searching for several parts of DRS
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* DRS Model Training




I Autoloss

oy & W

HUAWEI % I

* Motivation:
* Predefined and fixed loss function
* Exhaustively or manually searched fused loss

* Target:
e Searching for loss function
* Considering convergence behavior

AutolLoss: Automated Loss Function Search in Recommendations, KDD 21

Loss Function

Yy

---------------------

@009 (0000
0101 0f(1}---|0
Field / Field 2




I AutolLoss — Forward-propagation o @ s % |

e Step 1: the DRS makes predictions

e Step 2: calculating candidate losses
e Step 3: the controller generates weights(probabilities) according to predictions

e Step 4: calculating the overall Loss (Weighted sum)

e o - :_Controller |
! DRS Network ! . ! @
I I I | Step 3
% A IK D) probabilities Py .
Y- | ———» .
=/ ” . .\ Step 4
D | 1/T l O ep
I : I I pn T \\\
I L I "’ ‘..". N
o &= . /\I\80./\|'\&»y. |« ~ "~~~ ~—~—=—- >
> : ®
|

— > iLoss L
ol

|
I I y é ,I'l :..":":..: ‘
' ot ey 12 i
' wm | N | losses | £ i
” | S
S | |

~ !
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I AutolLoss — Backward-propagation

* DRS network: updated based on training error

e Controller: updated based on validation error

validation error

— -
: Controller |
I
I | D1
: probabilities py .
| —» .
| @)
I pn . \\\

7= ==

yA.'-.'

Y
... ,\.
4
»,
< @
4 H
-
.
4 .
LA )
’ - L
e . .
losses 2 ¢ o
3 S
.".‘ o'
‘ .’. '
.
Zn .

training error

—> Loss L
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I AutolLossGen

* Motivation:
* Handcrafted loss -> expertise & efforts
* Loss combinations -> all candidates are not suitable

* Target:
* Generate loss functions based on basic mathematical operations

AutolLossGen: Automatic Loss Function Generation for Recommender Systems, SIGIR 22

(Wsdm2023
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I AutolLossGen

e Search space: basic operations

* Loss function generation: operation + position

Variable set S

6

1
y

2 3 4
vy 1

5
-9 |y + ()| v —P)?

Operator Expression Arity
Add x+y 2
Multi X-y 2
Max max(x, y) 2
Min min(x, y) 2
Neg —X 1
Identical  x 1
Log sign(x) - log(|x| + &) 1
Square x? 1
Reciprocal sign(x)/(|x| + &) 1

Y

veg|, (1), [Aaa] (oo,
\ ? \ 4 \ f \
\ ; J o\ Y J
Round 1: y, Round 2: y5

\ )

Y
Round 3: y,
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I AutolLossGen

Phase I: Loss Search

Pass: Add f to F
: Proxy and copy RS model

negative reward model, get reward r

RNN) | Fail: Update RNN with [ Update copied RS

]

m:

Pass: Update RNN witNCCk/
add f to L, empty F and replace RS with copied RS

* Phase | (Search by RL)
e Step 1: Loss function generation
e Step 2: Check the formula
e Step 3: One-shot evaluation (Reward)
e Step 4: Backward

(Wsdm2023
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I AutoLossGen af & s @ |

HUAWEI

Phase [: Loss Search
Pass: Add f to F
. Proxy and copy RS model * Phase | (Search by RL)

IN) | Fail: Update RNN with | Update copied RS
negative reward model, get reward r e Phase |

m< * Check the gradient

Pass: Update RNN with 7~ check
add f to L, empty F and replace RS with copied RS

{ L = [f1:f21f31 ]
Phase II: Validation Check

Simulate (9, y) pairs r

J i Calculate i
grad f; (3,y) |
:-—'-5 s

(Wsdm2023
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I AutolLossGen

Phase I: Loss Search

Pass: Add f to F

Proxy and copy RS model

(RNN) | Fail: Update RNN with | Update copied RS
| negative reward model, get reward r

m:

Pass: Update RNN with 7~ check
add f to L, empty F and replace RS with copied RS

‘ L = [fl:fz,f3, .__]
Phase II: Validation Check |

9oy  |~laccept

L Simulate (9, y) pairs r
fi € Calculate grad ;' (9,v) L

| Updated L' = [......]
Phase III: Effectiveness Test

*

Train RS f; final
Init RS by fi performance

fiel

* Phase | (Search by RL)

* Phase
* Check the gradient

e Phase lll
* Train RS to converge

(Wsdm2023
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Pre-trained Model Fine-Tune Model AutoFT (Automatic Fine-Tune)
* Target: ®

. 1 ==
transfer learning for DRS Prediction | (@~ @00) G D ST
Layer ] [@ @@@:@@@]

[....Q] [o...o]
x®® fa®s

Feature Tx(m Th(z)s
Interaction [."'.] [O---O]

Gumbel
softmax trick

e Search space:
* Field-wise transfer

Layer [xs [hs : s o1
e Layer-wise transfer =N O -0)|
| i
[ .

&

* Strategy: gradient SR e e e eotlistos ozt
o O O

_________________________________________________________________________________________________________

(Wsdm2023

AutoFT: Automatic Fine-Tune for Parameters Transfer Learning in Click-Through Rate Prediction, 2021 SINGAPORE  FEBRUARY 27 - MARCH 3



[ ] [ ] (] Q ‘ /
I Summarize DRS Model Training ay & W o5
Method Search Space Search Strategy
AutoLoss Optimization: Loss Function Gradient
AutoLossGen Optimization: Loss Function RL
AutoFT Parameter Tuning: Fine-Tune or Not Gradient

* Loss-based optimization methods facilitate recommendation model training via

searching optimal loss function automatically, bringing significant results;

* From loss function to transfer learning, researchers gradually realize more flexible and

efficient methodologies to facilitate model training.

(Wsdm2023
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j A a @ e 5|
e Search space:
* Feature interaction . L

. . IFS Component ) // EDS Component \\]
* |Interaction function DO -0 | @O |
* Embedding dimension ~ °*** o, | |
_ NN N i N ol
_ _ 1 1 i i o il
MLP Interaction Function T aa M N J\U |
¢ Strategy: & Search Component S & ’ N 11 r i
. — e | [ i\ BDE ANy
* Gradient Feature Interaction i ——— A
Feature Interaction 7 O o A

Interaction Function

Search Component

|
i i
Pruned Embedding | ¢/ ez ey, Embedding Dimension | component ) ‘ |
' ‘ T Search Component | f f f |
Embedding e, e, e, i 4 >< | X i
{ e — i I
Field 1 Field 2 Field n e e, e Vi

B ——

(Wsdm2023

AIM: Automatic Interaction Machine for Click-Through Rate Prediction, TKDE 2021 SINGAPORE  FEBRUARY 27 - MARCH 3



j AIm

o D

* Feature interaction search
* Progressively enlarge feature interactions

* For p th order: search for interaction of p — 1 th order and 1 st

Next Layer

Selection Gate

@(1,2) | @(1,n) i @(n.1,n) Architecture Parameters

Batch Normalization

Interaction

.

N 9,8

A A A

e - &
Y ittt .

- Embedding
|

(Wsdm2023
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* Interaction function search n n[m
. . . . N o N / (
* Consider function-wise embeddings >¥ >4 >4 a(i,j,k)fk ik, ejk)‘
1=1 3>1|k=1
- Next Layer
| k K k K k Interaction & Function Gate
| | | | oo - | Architecture Parameters
(i.).k)
N ./\ J\ AS J\ J\ ./\ J\ J\ Batch Normalization
I A I A t 11
IFy | IFy . IFpy IFy | IF3 )« IFp - "Fl IF3 .. IF...H Interaction Function
D ———

Embedding
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* Embedding dimension search
* Consider the position information during the search
* Obtain embeddings dimensions from the pruned embeddings for retraining

Pruned Embedding

Embedding Gate
Architecture Parameters

Batch Normalization

Embedding
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e Step 1: Search for feature interaction and feature interaction function

e Step 2: Search for embedding dimensions
e Step 3: Construct DRS and retrain

I
: " FIS Component\ :
: search feature e,
' | interaction | B |
: p R : EDS Component ,
| IFS Component * search embedding
: search interaction : : dimension
.. | selected | Search embed stage |  selected
i : s?arCh :interaction-lF ———————————————— embedding size
(o interaction-IF Stage: -l pairs



) AutolAs

D Y

af &

HUAWEI

|

S o
TT; wmm=p Sample S; from probability distribution ;

Chosen structure
Unchosen structure [P
—————————————————— \ I/
The Architecture | L7
Generator Network | N
R
i \ \\ f
| R
I
I

(as|6,s¢.4

~
L

CTR Prediction Model Search Space

|
|
|
|
|
|
|
|
|
/

(az|0,s02)

)

MLP Structure

Interaction Function

Selection Gate

Projection Space

( ) 0000 O®

3 Sl Sl

= ~ ~

S Q S

5 e =

> 2 2

& S S

— = t} D
7))
Y

|
|
|
|
:
|
|
|
S22 :
l
|
|
|
]
|
|

—_—————

Feature1 --

* Featurei ...

—_—————

Featurej -

—_—————

Featuren

'l | Embedding Space

e Search space:
Embedding size
Projection size
Feature interaction
Interaction function
MLP

* Strategy:
* Knowledge distillation
* Reinforcement learning

Autoias: Automatic integrated architecture searcher for click-trough rate prediction, CIKM 2021
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) AutolAs

Embedding size (S1)
{d1,d>, ...,dn}

Projection size (S2)

* Unified embedding for feature interaction

{d1,d2, ....dn}

Feature interaction (S3)
e First order features (V)

e Second order interaction ((g’))

Interaction function (54)

MLP (Fixed L)

* Input layer (S5) {1,2,...

e Layer dimensions (S6)

fproduct = é; 0 €},
feoncat = Linear(concat|e;, €;])
f})lus = & +¢j,

fmax = max(é;, é\j),

,L}

{h1,ha, ..., hn}

(
I
|
|
|
|
l

— — — — — — — — — — — — — — —

7
MLP structure \

— — — — — — — — — — — — — — —

The unchosen connection

The chosen connection

(Wsdmzo23
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S
TT; sy Sample S; from probability distribution ;

Chosen structure CTR Prediction Model Search Space
°
Sample process Unchosen structure ! E N
0 ( The Architecture Voo \1
.= (0 a: | | |
P; ”l( lr Ai-1; al) | Generator Network | N | MLP Structure
| | N !
ai ~ P | ’ B ’
| | \\ f )
A ! | “S$xr-e-—-—-—-—————- -
* Reward l s A N P
: (as]6,s9.4) | |( Concat | | Plus : Interaction Function
I I [ N )
_ - ' Sa !
R=1- T, K(a,6,s0.3) |
| S3 : @ Selection Gate
Krr(as|0,s¢.2) i
i : [:] [:] Projection Space
s |
i (az|0,s0.1) —
| =
| | ( ] (C D ) ] Embedding Space
|
K 72,16, 5,) Jzu—
AR YRR Y ¥ AR Y
e ) @0 -0 -0@0 0@

Feature1 - Featurei ... Featurej ... Featuren
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I AutolAS a & W 5

e Step 1: Train teacher network (the largest one)
L(y,yt) = —ylogy: — (1 —y)log(1 - yt)
» Step 2: Sample and update architectures as student network (KD step)

Lso_ft = L(?jt’ yi) Lhara = L(Y,yi) ,B-Lsoft + (1= ) Lhard

e Step 3: Sample architectures again and train the policy

M
1
VoJ(0) ~ N Z Vg log P(a;; 0)R;.
i=1
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Y
° Motivation: Loss Functioné

e 3 parts: sequential, non-sequential, MLP Y
 Unified model for all scenarios OCL)O
e Restricted search space OQQ
A S
* Target:
 Searching for 3 parts Behavior Modeling OOOO ....... K) OO@ ....... o OOOO

dapti | z z
[ ] |
Adaptive mode {z1, 22,24}

Sequential features

olol-..|1 0|1 lis|0 1|0 |«<=|0
Field Field 2

Non-Sequential features T

User Item Context Interaction

mzozs

Automatic Behavior Modeling, Interaction Exploration and MLP Investigation in the Recommender System, IJCAI 2021 SINGAPORE  FESRUARY27- MARCH S



I AMEIR — Search Space

a
@
2.

H

[

e Subspace 1 (Behavior modeling)

e Searching for a fixed number of layers (L)

* Normalization {Layer normalization, None}
e Layer {Conv, Recur, Pooling, Attention}

e Activation {ReLU, GelU, Swish, Identity}

e Subspace 2 (Interaction exploration)

 Interaction function: hadamard product (fixed)
e Feature interaction candidates

e Subspace 3 (MLP investigation)

e MLP dimension
e Activation: {ReLU, Swish, Identity, Dice}

Act

A

Layer

A

Norm

Block

Hj = Act} (La,yer;1 (Norm;‘ (H;’_1 ))) + H} |

Stage 1: Behavior Modeling Search

Kth Order Interaction: €134, ., ", €jjm...
1st Order Interaction: e;3, -, €;;

Origin embedding : ey,-- -, €;

Stage 2: Feature interaction search

Kth Linear : dj,_1 — dy,

A
A
2nd Linear : d; — dy

A

1st Linear : dy — dy

A

Input: dj

Constrain:d; .1 = {0.1,0.2,...,1}d;

Stage 3: MLP investigation

(Wsdm2023
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} AMEIR

e Overall search strategy: One-shot random search

e Step 1: Using a predefined MLP, search for the optimal architecture.

e Step 2: Combined with SMBO, progressively expand the interaction sets, also use a

predefined MLP.

e Step 3: Using a weight matrix of maximal dimension to realize one-shot search

Act

A

Layer

A

Norm

Block
H;‘ = Act} (Layer;‘ (Norm? (H;’_1 ) )) + H?_l

Stage 1: Behavior Modeling Search

Kth Order Interaction: Iel34_ L €im. .
1st Order Interaction:le;3, - - -, €;;
Origin embedding :le1,-- -, €;

Stage 2: Feature interaction search

Kth Linear : dj,_1 — dj,
A
2nd Linear : dj — dy

A

1st Linear : dy — d

A

Input: dj

Constrain:d; 1 = {0.1,0.2,...,1}d;

Stage 3: MLP investigation

(Wsdm2023
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I Summarize DRS Comprehensive Search f-m g? % |

Method Search Space Search Strategy
AIM Embedding Dimension, Intearaction Function, Feature Interaction Gradient

AutolIAS | Embedding Dimension, Projection Dimension, Interaction Function, Feature Interaction, MLP  Reinforcement Learning

AMEIR Sequential model, Feature interaction, MLP One-shot Random Search

* Existing comprehensive search methods mainly focus on feature embedding and feature
interaction components. Some works also consider the MLP structure for final perdition
while other parts as sequential feature modeling get few attention.

* The search space is very large for comprehensive search since it considers multiple
components. As a result, efficient search strategies are usually adopted.

(Wsdm2023

SINGAPORE FEBRUARY 27 - MARCH 3



W\ Table of Contents

e Conclusion & Future Direction




I Conclusion oy Q/?"/b Ve :%|

HUAWEI

Automated Machine Learning contribute to improving the performance of deep recommender systems in a
data-driven manner.

Search embedding components to better model feature representations

Design deep networks to better capture feature interactions

Design model training process for more efficient and effective optimization

Design comprehensive system architectures to better improve performance

Automated Machine Learning

1

|

I

1

|

I

I M Optimization > @ > &
I Metric
I

1

|

I

1

|

Automated Machine Learning
Machine Learning Model

— O o . . S e e e e e e e

0 e Cory —— G
______________________________________ , wsdm2023
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Conclusion

AutoML advantages:

 Different data = different architectures
* Less expert knowledge

Saving time and efforts

Feature Generation
Feature Selection

Feature Embedding

Loss Function
Feature Interaction Optimizer
| | | --I- |

Data Feature R Model Model
Collectlon Engineering )‘ J Constructlon) Training > @
== l]ul] g Uuﬁ _—:__' l]uﬁ o0
= == - EX (¢

Recommendatlon Raw Training Recommendation Well-trained
Scenerios Data Data Model Model
T Deployment

(@)} Human Involved

|

Automated

(Wsdm2023

SINGAPORE FEBRUARY 27 - MARCH 3



AutoML for Deep Recommender Systems oy @ Ve % |

HUAWEI

s ' Abstract = Existing AutoML-based work
o A www21) AP ® evolves from single-component
NIS [KDD'21] RuLe [SICIRZ] (TKDE'>1] -
KOO0, AR [KDD21) o & search to multi-component joint
UMEC DeepLight
[KDD'20] ¥ [ICLR'20]  [WSDM'21] searc h
ANT °
[ICLR'21] *
* AutoG?n
ARt s ,  MWsowz = The search space of these AutoML-
[KDD’21] ’ , .
e B2 ‘ based work develops from detailed
Single-Component * e torb Multi-Component to abstract for shrinking search
o © ﬁé’ﬁ?ﬁ?ﬂ LO-‘:;GN[KDD'H] 1 Op?:uter d 1 i h
. ko Esen acre Lo-sion wlnter space and improving searc
AutoCross WWWw20] F“‘,Aés PROFIT Aﬁn Eff|C|ency.
oo moGro:; A‘Au'toHash [KDD’21] eures 21 O [TKDE'21]
| OCRMIMOEML toss  tasuan | SORZ Featre % oradient | ™ The search algorithm of existing
[KDD9] % [ICLR20] [KDD21] - k . . | b d d t-
1) ¥¢ AutoFIS * Embedding O RL WOrK IS mainly based on gradien
[u:FﬁI%s] ﬁ%?:glKDD,m] A P<E>P AMTL m |Interaction A Evolutionary h : 1:
| o IKDDS]  Avcreaure PEP chlsy . . based methods, thus providing
[EIGR 1] Detailed raimng  ©  Ofhers efficient model searching and

training mode.
The trend of AutoML for recommender system
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I Summarize DRS Feature Selection af & W % |

HUAWEI

Model Candidates Granularity Combination Gating/Scoring Search Strategy
FSTD Raw features Field-level  Filter/Wrapper AUC RL
MARLFS Raw features Field-level Embedded None RL
AutoField Raw features Field-level Embedded Continuous Gradient
AdaFS Raw features Field-level Embedded Continuous Gradient
LPFS Raw features Field-level Embedded Zero/Non-zero Gradient
OptFS Raw features Feature-level Embedded Approx. zero Gradient
AutoCross Generated features  Field-level Wrapper AUC Beam Search
GLIDER  Generated features  Field-level Filter NID Gradient
AEFE Generated features  Field-level All Continuous Greedy Search
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I Selection of raw features af & W @ |

HUAWEI

Granularity Gating/Scoring Search Strategy
FSTD Field-level Temporal Difference RL (TD + UCB)
MARLFS Field-level None RL (DQN)
AutoField Field-level Continuous Gradient
AdaFS Field-level Continuous Gradient
LPFS Field-level Zero/Non-zero Gradient (LO)
OptFS Feature-level Approx. zero Gradient (LO)

* Reinforcement learning methods consider the problem of feature selection as a Markov

decision process. They are less prone to overfitting since they usually overall
performance of the model when designing reward functions;

* Gradient-based approaches are more practical to real-world recommender systems
owing to their efficiency and simplicity. In addition, they are flexible to be applied to
various recommendation models and datasets.
wsdm2023
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I Selection of generated features “fv’ @ |

Combination Granularity Gating/Scoring Search Strategy
AutoCross Wrapper Field-level None Beam Search
GLIDER Filter Field-level NID Gradient
AEFE All Field-level Continuous Greedy Search

* Selectively learning the generated features can bring great precision improvement to
prediction. They are highly interpretable, which is helpful for digging deep into the
underlying relationship of the data;

 Compared with selection from raw features, generated feature selection usually has a
much larger search space. Researchers usually adopt greedy search methods, which
suffer from the heavy storage pressure and time-consuming process. It is highly desirable
for efficient AutoML techniques to facilitate the selection from generated features.
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I Future Direction for Feature Selection af & W % |

Model Candidates Granularity Combination Gating/Scoring Search Strategy
FSTD Raw features Field-level  Filter/Wrapper AUC RL
MARLFS Raw features Field-level Embedded None RL
AutoField Raw features Field-level Embedded Continuous Gradient
AdaFS Raw features Field-level Embedded Continuous Gradient
LPFS Raw features Field-level Embedded Zero/Non-zero Gradient
OptFS Raw features Feature-level Embedded Approx. zero Gradient
AutoCross Generated features  Field-level Wrapper AUC Beam Search
GLIDER  Generated features  Field-level Filter NID Gradient
AEFE Generated features  Field-level All Continuous Greedy Search

1) Feature Selection
* Combinatorial features are of great importance for recommender systems.

* How to generate and select combinatorial features effectively and save memory usage is an urgent

problem for both industry and academics
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I Summarize DRS Feature Embedding oy Q/'S’;b Ve % |

Method Column-Wise Row-Wise Search Space Multi-Embedding Search Algorithm Memory Reduction
AMTL X X d” X Gradient X
PEP X X 2vd X Regularization X
AutoEmb v X dv v Gradient X
ESAPN v X av v RL X
SSEDS X V omd X Gradient V
AutoSrh X v gbd X Gradient v/
AutoDim v/ v/ a™ X Gradient v/
NIS v v/ ab or b® X RL v/
RULE v v/ 2ab X Evolutionary v
ANT - - 2kV X Gradient v
AutoDis - - 2kV X Gradient v

* d is the embedding size, VV is the vocabulary size, m is the number of feature fields, a is the number of sub-dimensions, b is the
number of feature groups, k is the number of meta-embeddings. (a < d, b<<V)
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Full Embedding Search——Summary
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* Full embedding search methods aim to search the optimal embedding dimension for each feature
value, facing huge search space and impeding the search efficiency;

* To facilitate the search procedure, several approaches are proposed to shrink the search space,
which can be categorized into three kinds: column-based, row-based, and column & row-based.
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I Column-based Embedding Search——Summary

a & D
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* Dividing the embedding dimension into column-wise sub-dimensions (e.g., AutoEmb, ESAPN) is conducive to

reducing the search space;

e Using multiply embedding tables to generate several embedding vectors (e.g., AutoEmb, ESAPN) may incur

obvious memory overhead, which can be avoid by shared-embeddings;

e Searching dimensions for each feature value will cause variable-length embedding vectors, which are hard to

store in the fix-width embedding table and reduce memory.
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I Row-based Embedding Search——Summary

a & D
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feature values, shrinking the search space;

VO ———

embedding dimension for a group of

* In comparison with the column-based embedding search methods, row-based search methods
conduces to truly saving memory because feature values within a group are assigned with a
same embedding dimension, which can be stored in a fix-width embedding table.
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I Column & Row-based Embedding Search——Summary IM Q%S ) % |

Feature Feature Embedding
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* Although it is theoretically optimal to search the suitable dimension for each feature value, it poses great
challenges to efficient search algorithm. Instead, shrinking the search space in an appropriate manner may
result in better performance;

e Reducing the search space from both row-wise and column-wise perspectives attributes to reducing the
search space and achieving better results;

* The evolution of search space from detailed to abstract can lead to higher efficiency.
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I Future Direction for Feature Embedding

af & W

HUAWEI

> |

Method Column-Wise Row-Wise Search Space Multi-Embedding Search Algorithm Memory Reduction
AMTL X X dv X Gradient X
PEP X X 2Vd X Regularization X
AutoEmb v X dv v/ Gradient X
ESAPN v X a’ v RL X
SSEDS X V gmd X Gradient V
AutoSrh X v obd X Gradient v
AutoDim v v/ a™ X Gradient v
NIS v v/ ab or b® X RL v
RULE v v 2ab X Evolutionary v
ANT - - 2kV X Gradient V
AutoDis - - 2kV X Gradient v

2) Feature Embedding Search

* Feature embeddings account for the majority of the parameters for the recommendation model

 Combining the feature representation learning with model compression or quantization automatically

may be a promising research direction
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I Summarize DRS Feature Interaction

Method Search Category  Search Space Order Search Algorithm

AutoFIS Feature Interaction 2Cm second-order Gradient
AutoGroup Feature Interaction 29™m high-order Gradient
PROFIT Feature Interaction mR high-order Gradient
FIVES Feature Interaction 2m’ high-order Gradient
Lo-SIGN Feature Interaction om’ second-order Gradient
BP-FIS Feature Interaction u2Cm second-order Bayesian
SIF Interaction Function cl second-order Gradient

AutoFeature Interaction Function c"nCh, second-order Evolutionary
AOANet Interaction Function ~ 2/(/) pairs| high-order Gradient

AutoCTR Interaction Block cCn high-order Evolutionary
AutoPI Interaction Block cCn high-order Gradient

* m is the number of feature fields, p is the order, g is the number of pre-defined groups, n is the number of pre-defined bolcks, c is
the number of candidate interaction functions.
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I Feature Interaction Search——Summary ay & W %|

Interaction Block
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* Feature interaction search based methods focus on searching beneficial low-/high order
interactive signals for factorization models;

* For high-order interaction search, different approaches are proposed to reduce the search space,
such as feature grouping, hashing, tensor decomposition, and graph aggregation;

* Gradient-based search algorithm is dominant in this task due to the high efficiency.
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I Interaction Function Search——Summary oy @5 Ve % |
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Search

* Although searching appropriate interaction functions for different feature interactions helps to

improve accuracy, the introduced cost is higher, which hinders the application in high-order
scenarios;

* Generalized interaction function search (e.g., AOANet) is more efficient than searching over

human-designed search space (e.g., AutoFeature), providing a promising paradigm for high-
order interaction function search.
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I Summarize DRS Interaction

Method Search Category  Search Space Order Search Algorithm

AutoFIS Feature Interaction 2Cm second-order Gradient
AutoGroup Feature Interaction 29™m high-order Gradient
PROFIT Feature Interaction mR high-order Gradient
FIVES Feature Interaction 2m’ high-order Gradient
Lo-SIGN Feature Interaction om’ second-order Gradient
BP-FIS Feature Interaction u2Cm second-order Bayesian
SIF Interaction Function cl second-order Gradient

AutoFeature Interaction Function c"nCh, second-order Evolutionary
AOANet Interaction Function ~ 2/(/) pairs| high-order Gradient

AutoCTR Interaction Block cCn high-order Evolutionary
AutoPI Interaction Block cCn high-order Gradient

* m is the number of feature fields, p is the order, g is the number of pre-defined groups, n is the number of pre-defined bolcks, c is
the number of candidate interaction functions.
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I Future Direction for Feature Interaction

af & W

HUAWEI

Method Search Category  Search Space Order Search Algorithm

AutoFIS Feature Interaction 2Cm second-order Gradient
AutoGroup Feature Interaction 29™m high-order Gradient
PROFIT Feature Interaction mR high-order Gradient
FIVES Feature Interaction gm’ high-order Gradient
Lo-SIGN Feature Interaction om’ second-order Gradient
BP-FIS Feature Interaction u2Cm second-order Bayesian
SIF Interaction Function cl second-order Gradient

AutoFeature Interaction Function c"nCh second-order Evolutionary
AOANet Interaction Function ~ 21(:/) pairs| high-order Gradient

AutoCTR Interaction Block cCn high-order Evolutionary
AutoPI Interaction Block cCn high-order Gradient

3) Feature Interaction Search

e Existing interaction functions, e.g., inner product and MLP, are widely-used for recommendation

* Designing and introducing more informative interaction operators to generate more diverse interaction

functions may improve the model prediction performance
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I Summarize DRS Model Training ay & W o5
Method Search Space Search Strategy
AutoLoss Optimization: Loss Function Gradient
AutoLossGen Optimization: Loss Function RL
AutoFT Parameter Tuning: Fine-Tune or Not Gradient

* Loss-based optimization methods facilitate recommendation model training via

searching optimal loss function automatically, bringing significant results;

* From loss function to transfer learning, researchers gradually realize more flexible and

efficient methodologies to facilitate model training.
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I Summarize DRS Model Training ay & W o5
Method Search Space Search Strategy
AutoLoss Optimization: Loss Function Gradient
AutoLossGen Optimization: Loss Function RL
AutoFT Parameter Tuning: Fine-Tune or Not Gradient

* Loss-based optimization methods facilitate recommendation model training via

searching optimal loss function automatically, bringing significant results;

* From loss function to transfer learning, researchers gradually realize more flexible and

efficient methodologies to facilitate model training.
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I Future Direction for Model Training oy & W % |

Method Search Space Search Strategy
AutoLoss Optimization: Loss Function Gradient
AutoLossGen Optimization: Loss Function RL
AutoFT Parameter Tuning: Fine-Tune or Not Gradient

4) Model Training

* Existing works mainly focus on the training loss, including loss function selection or generation and
regularization adjustment.

 More complex directions for model training should be explored, e.g., optimizer settings, gradient

direction guidance.
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I Summarize DRS Comprehensive Search f-m g? % |

Method Search Space Search Strategy
AIM Embedding Dimension, Intearaction Function, Feature Interaction Gradient

AutolIAS | Embedding Dimension, Projection Dimension, Interaction Function, Feature Interaction, MLP  Reinforcement Learning

AMEIR Sequential model, Feature interaction, MLP One-shot Random Search

* Existing comprehensive search methods mainly focus on feature embedding and feature
interaction components. Some works also consider the MLP structure for final perdition
while other parts as sequential feature modeling get few attention.

* The search space is very large for comprehensive search since it considers multiple
components. As a result, efficient search strategies are usually adopted.
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Method Search Space Search Strategy
AIM Embedding Dimension, Intearaction Function, Feature Interaction Gradient

AutolAS | Embedding Dimension, Projection Dimension, Interaction Function, Feature Interaction, MLP  Reinforcement Learning

AMEIR Sequential model, Feature interaction, MLP One-shot Random Search

5) Comprehensive Search

* Existing solutions search each component separately with heterogeneous search space, resulting in low
search efficiency and sub-optimal performance.

* |t is potential to convert the heterogeneous search space into an isomorphic unified search space and
perform efficient search algorithm.
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I Future Directions ay & W S5

6) Multi-task Learning

* Exploiting different revenue targets (e.g., click-through rate and conversion rate), is one of the most
important techniques for industry recommendations. It is worthy of designing an automatic algorithm for
adaptive multi-task learning.

7) User Behavior Modeling

* User history behaviors contain different dimensions of interests. Automatically retrieving beneficial
history behaviors for modeling user preference is an important further direction.
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