
AutoML for Deep Recommender Systems:
Fundamentals and Advances

Xiangyu Zhao
City University of Hong Kong

xianzhao@cityu.edu.hk

Wenqi Fan
The Hong Kong Polytechnic University

wenqifan03@gmail.com

Bo Chen
Huawei Noah’s Ark Lab

chenbo116@huawei.com

Ruiming Tang
Huawei Noah’s Ark Lab

tangruiming@huawei.com

Huifeng Guo
Huawei Noah’s Ark Lab

huifeng.guo@huawei.com

Yejing Wang
City University of Hong Kong

adave631@gmail.com

Tutorial Website (Slides): https://advanced-recommender-systems.github.io/AutoML-Recommendations/

A Comprehensive Survey on Automated Machine Learning for Recommendations, arXiv:2204.01390

Yong Liu
Huawei Noah’s Ark Lab
liu.yong6@huawei.com

https://advanced-recommender-systems.github.io/AutoML-Recommendations/

Presenter Bio

Bo Chen
Researcher

Huawei Noah’s Ark Lab

Ruiming Tang
Researcher

Huawei Noah’s Ark Lab

Huifeng Guo
Researcher

Huawei Noah’s Ark Lab

Yong Liu
Researcher

Huawei Noah’s Ark Lab

Yejing Wang
Ph.D. student

City University of Hong Kong

Wenqi Fan
Professor

Hong Kong Polytechnic University

Xiangyu Zhao
Professor

City University of Hong Kong

Recommender Systems

Recommender
Systems

Information overloadAge of Information Explosion

Recommend item X to user

Items can be Products, News, Movies, Videos,
Friends, etc.

Recommender Systems

A B C

§ Recommendation has been widely applied in online services
– E-commerce, Content Sharing, Social Networking, etc.

Product Recommendation

Recommender Systems

§ Recommendation has been widely applied in online services
– E-commerce, Content Sharing, Social Networking, etc.

News/Video/Image Recommendation

Recommender Systems

Friend Recommendation

§ Recommendation has been widely applied in online services
– E-commerce, Content Sharing, Social Networking, etc.

Problem Formulation

Historical user-item interactions or
additional side information (e.g.,
social relations, item’s knowledge, etc.)

INPUT
Predict how likely a user would
interact with a target Item (e.g.,
click, view, or purchase)

OUTPUT

Item set

User set social relations, age,
gender, occupation, etc.

year, genre, actor,
reviews, etc.

Side information

Side information

! users

! items
(movies) …

…

User-item Interaction History

5
5

5 5

3

5

14

Spider
Man

Iron ManToy
Story

MinionsCaptain
America

Lily LalaPeter David

Recommender Systems

§ Collaborative Filtering (CF) is the most well-known technique for recommendation
– Similar users (with respect to their historical interactions) have similar preferences
– Modelling users’ preference on items based on their past interactions (e.g., ratings and clicks)

items …

users …! users

! items
(movies) …

…

User-item Interaction History

5
5

5 5

3

5

14

Spider
Man

Iron ManToy
Story

MinionsCaptain
America

Lily LalaPeter David

Task: predicting missing movie ratings in Netflix.

5 4
…

5
…

5
…

5 1
2 5

! users

" items (movies)

Lily

…

?
…

? ?
? ? ? ?

…
? ?

…
? ? ?

Spider
Man

Iron ManToy
Story

MinionsCaptain
America

…

User-item Rating Matrix𝐑

§ Learning representations of users and items is the key of CF

Deep Learning is Changing Our Lives

Deep Recommender Architecture

Input
Feature

Layer

Deep Recommender Architecture

System Design

Feature Interaction
Layer

Feature Embedding
Layer

Output Layer

Deep Recommender Architecture

Pooling, convolution, and the number
of layers, inner product, outer product,
convolution, etc.

High/low-frequency features
embedding sizes

Hardware infrastructure,
data pipeline, information
transfer, implementation,
deployment, optimization,
evaluation, etc.

System Design

Feature Interaction
Layer

Feature Embedding
Layer

Output Layer
BCE, BPR, MSE

Deep Recommender Architecture

§ Manually designed architecture:
– Extensive expertise
– Substantial engineering labor and time cost
– Human bias and error

§ Advantages
– Feature representations of users and items
– Non-linear relationships between users and

items

AutoML for Deep Recommender Systems

§ Deep architectures are designed by the machine automatically
§ Advantages

– Less expert knowledge
– Saving time and efforts
– Different data -> different architectures

AutoML for Deep Recommender Systems

The trend of AutoML for recommender system

§ Existing AutoML-based work
evolves from single-component
search to multi-component joint
search.

§ The search space of these AutoML-
based work develops from detailed
to abstract for shrinking search
space and improving search
efficiency.

§ The search algorithm of existing
work is mainly based on gradient-
based methods, thus providing
efficient model searching and
training mode.

Automated Machine Learning for Recommendations

§ Agenda
Ø Introduction (Dr. LIU Yong)
ØPreliminary of AutoML (Dr. ZHAO Xiangyu)
ØDRS Feature Selection (Mr. WANG Yejing)
ØDRS Embedding Component (Mr. CHEN Bo)
ØDRS Interaction Component (Dr. TANG Ruiming)
ØDRS Model Training (Dr. ZHAO Xiangyu)
ØDRS Comprehensive Search (Dr. ZHAO Xiangyu)
ØConclusion & Future Direction (Dr. FAN Wenqi)
ØQ&A

A Comprehensive Survey on Automated Machine Learning for Recommendations.
arXiv:2204.01390

Tutorial Website (Slides): https://advanced-recommender-systems.github.io/AutoML-Recommendations/

https://advanced-recommender-systems.github.io/AutoML-Recommendations/

Why AutoML?

Success of Machine Learning

M. Lindauer

Astronomy

Weather
Prediction

Summary
Generation

Image
Recognition

Game Play

Drug
Discovery

Material
Design

Service

Retail

Social
Media

Media

Manufacturing

Health
Care

Financial
Services

Creative
Arts

Chemistry

Teaching

Search

Robotic

Maintenance
Prediction

Traffic
Prediction

Credit
Assignment

Product
Recommendation

Energy

Physics

Machine Learning Pipeline

Algorithms and Hyperparameters

ReductionPreprocessing

Standardization

Feature Selection

Outlier Removal

Missing Feature
Imputation

Embeddings

Feature
Reduction

...

PCA

Kernel PCA

ICA

LDA

NMF

Truncated SVD

...

Hyperparameters

#components

Kernel

degree

coeff

alpha

solver

...

→ We might want more than 1 data preprocessor!

20M. Lindauer

Complexity and the Best Combination

...

Area

Hyperparameters
Technique

Preprocessing ● Naive Assumptions:
only 3 decisions at each level

● Possible options: 3 x 3 x 3 = 27

● More realistic assumption:
at least 10 decisions at leach level

● Possible options: 10 x 10 x 10 = 1000

● Choose 3 preprocessors instead of 1
→ 1000 x 1000 x 1000 =

1 000 000 000

● Still naive!
→ Hyperparameters are often
continuous and not discrete
→ infinite amount of settings!

Classification Algorithms

Recurrent
Network

ResNet
Feedforward

Network

LGB

XGB

Random
Forests

Boosting
Trees

Decision
Trees

Naive
Bayes

Gaussian
Process

Nearest
Neighbor

SGD

Kernel Linear SVM
SVM

Poly.
SVM

Logistic
Regression

Bayesian
Regression

LARS

Least-Angle

Elastic-net

Lasso

Ridge

Least
Squares

→ There are more than 100
classification algorithms!
→ Each of these has 2-50

hyperparameters

22M. Lindauer

Challenges in Designing ML Pipelines

Black-Box
Problem

Complex
Search Space

Expensive
Evaluations

Noise on
observations

23M. Lindauer

From Manual ML to Automated ML

Design Decisions by AutoML

Algorithms Pre-
processing

Architecture
Design

Hyper-
parameters

...

Neural Architecture Search (NAS)

• Find neural architecture A such that deep learning works best for given data
• Measured by validation error of architectureAwith trained weights

Neural Architecture Search (NAS)

• Find neural architecture A such that deep learning works best for given data
• Measured by validation error of architectureAwith trained weights

validation loss

training loss

Neural Architecture Search (NAS)

• Find neural architecture A such that deep learning works best for given data
• Measured by validation error of architectureAwith trained weights

• Famously tackled by
reinforcement learning [Zoph & Le, ICLR 2017]
• 12.800 architectures trained fully
• 800 GPUs for 2 weeks (about $60.000 USD)

https://openreview.net/pdf?id=r1Ue8Hcxg

Major Components

Search
Algorithm

Evaluation
Method

Search
Space

Update parameters

• Search Space:
• A set of operations (e.g. convolution, fully-

connected, pooling)
• how operations can be connected to form valid

network architectures

operations

Search Space

• Building blocks are like basic genes for these individuals
• Some examples here

• Genetic CNN: only 3×3 convolution is allowed to be searched (followed by default
BN and ReLU operations), 3×3 pooling is fixed
• NASNet: 13 operations shown below
• PNASNet: 8 operations, removing those

never-used ones from NASNet
• ENASNet: 6 operations
• DARTS: 8 operations

[Xie, 2017] L. Xie et al., Genetic CNN, ICCV, 2017.
[Zoph, 2018] B. Zoph et al., Learning Transferable Architectures for Scalable Image Recognition, CVPR, 2018.
[Liu, 2018] C. Liu et al., Progressive Neural Architecture Search, ECCV, 2018.
[Pham, 2018] H. Pham et al., Efficient Neural Architecture Search via Parameter Sharing, ICML, 2018.
[Liu, 2019] H. Liu et al., DARTS: Differentiable Architecture Search, ICLR, 2019.

Major Components

• Search Strategy
• Sampling a population of network architecture

candidates (child models)
• Rewards: child model performance metrics (e.g.

high accuracy, low latency)

• Algorithms
• Random Search
• Reinforcement Learning
• Gradient descent
• Evolutionary Algorithms

Search
Strategy

Evaluation
Method

Search
Space

Update parameters

Search Algorithm

• Finding new individuals that have potentials to work better
• Heuristic search in the large space

• Two mainly applied methods: the genetic algorithm and reinforcement
learning
• Both are heuristic algorithms applied to the scenarios of a large search space and

limited ability to explore every single element in the space
• A fundamental assumption: both of these heuristic algorithms can preserve good

genes and based on which discover possible improvements

• Also, it is possible to integrate architecture search to network optimization
• These algorithms are often much faster

[Real, 2017] E. Real et al., Large-Scale Evolution of Image Classifiers, ICML, 2017.
[Xie, 2017] L. Xie et al., Genetic CNN, ICCV, 2017.
[Zoph, 2018] B. Zoph et al., Learning Transferable Architectures for Scalable Image Recognition, CVPR, 2018.
[Liu, 2018] C. Liu et al., Progressive Neural Architecture Search, ECCV, 2018.
[Pham, 2018] H. Pham et al., Efficient Neural Architecture Search via Parameter Sharing, ICML, 2018.
[Liu, 2019] H. Liu et al., DARTS: Differentiable Architecture Search, ICLR, 2019.

Major Components

• Evaluation Strategy
• We need to estimate or predict the performance

of child models
• In order to obtain feedback for the search

algorithm to learn

• Methods
• Training from Scratch
• Proxy Task Performance
• Parameter Sharing
• Prediction-Based

Search
Algorithm

Evaluation
Strategy

Search
Space

Update parameters

Evaluation Method

• Evaluation aims at determining which individuals are good and to be
preserved
• Conventionally, this was often done by training a network from scratch

• This is extremely time-consuming, so researchers often train NAS on a small dataset
like CIFAR and then transfer the found architecture to larger datasets like ImageNet
• Even in this way, the training process is really slow: Genetic-CNN requires 17 GPU-

days for a single training process, and NAS-RL requires more than 20,000 GPU-days

• Efficient methods were proposed later
• Ideas include parameter sharing (without the need of re-training everything for each

new individual) and using a differentiable architecture (joint optimization)
• Now, an efficient search process on CIFAR can be reduced to a few GPU-hours,

though training the searched architecture on ImageNet is still time-consuming
[Xie, 2017] L. Xie et al., Genetic CNN, ICCV, 2017.
[Zoph, 2017] B. Zoph et al., Neural Architecture Search with Reinforcement Learning, ICLR, 2017.
[Pham, 2018] H. Pham et al., Efficient Neural Architecture Search via Parameter Sharing, ICML, 2018.
[Liu, 2019] H. Liu et al., DARTS: Differentiable Architecture Search, ICLR, 2019.

NAS with Reinforcement Learning

• NAS with Reinforcement Learning [Zoph & Le, ICLR 2017]
• State-of-the-art results for CIFAR-10, Penn Treebank

NAS with Reinforcement Learning

• NAS with Reinforcement Learning [Zoph & Le, ICLR 2017]
• State-of-the-art results for CIFAR-10, Penn Treebank
• Large computational demands:

800 GPUs for 3-4 weeks, 12.800 architectures trained

NAS with Reinforcement Learning

• NAS with Reinforcement Learning [Zoph & Le, ICLR 2017]
• State-of-the-art results for CIFAR-10, Penn Treebank
• Large computational demands:

800 GPUs for 3-4 weeks, 12.800 architectures trained

NAS with Reinforcement Learning

[Zoph & Le, ICLR 2017]

• Architecture of neural network represented as string e.g., [“filter height: 5”, “filter width:
3”, “# of filters: 24”]
• Controller (RNN) generates string that represents architecture

Softmax classifier

Embedding

Training with REINFORCE

Accuracy of architecture on
held-out dataset

Architecture predicted by the controller RNN
viewed as a sequence of actions

Parameters of Controller RNN

NAS as Hyperparameter Optimization

[Zoph & Le, ICLR 2017]

• Architecture of neural network represented as string e.g., [“filter height: 5”, “filter width:
3”, “# of filters: 24”]
• We can simply treat these as categorical parameters

• E.g., 25 cat. parameters for each of the 2 cells in [Zoph et al, CVPR 2018]

NAS with Evolution

• Neuroevolution
(already since the 1990s [Angeline et al., 1994; Stanley and Miikkulainen, 2002])
• Mutation steps, such as adding, changing or removing a layer

[Real et al., ICML 2017; Miikkulainen et al., arXiv 2017]

RL vs. Evolution vs. Random Search

[Real et al., AAAI 2019]

during architecture search final evaluation

https://arxiv.org/pdf/1802.01548.pdf

Huge Compute of Blackbox Methods

Going to
cell
search
space

[Wistuba et al., preprint 2019]

Dataset:
CIFAR-10

https://arxiv.org/pdf/1905.01392.pdf

Overview of NAS Speedup Techniques

• Weight Inheritance & Network Morphisms
• Local changes in architecture, followed by fine-tuning steps
• [Cai et al, 2018; Elsken et al, 2017; Cortes et al, 2017; Cai et al, 2018, Elsken et al, 2019]

• Weight Sharing & One-Shot Models
• ENAS [Pham et al, 2018], DARTS [Liu et al, 2019] and many follow-ups

• Meta-Learning
• Learning across datasets
• To initialize architectural weights of DARTS [Lian et al, 2020; Elsken et al, 2020]
• Prior for blackbox optimization methods [Wong et al, 2018; Runge et al, 2019; Zimmer et al,

2020]

• Multi-Fidelity Optimization
• Exploit cheaper proxy models for blackbox optimizers, in particular Bayesian optimization
• [Jamieson & Talwalkar, 2016; Li et al, 2017; Falkner et al, 2018; Zela et al, 2018; White et al, 2021]

Network Morphisms

• Network morphisms [Chen et al., 2016; Wei et al., 2016]
• Change the network structure, but not the modelled function (i.e., for every input,

the network yields the same output
• as before applying the network morphism)

• Can use this in NAS algorithms as operations to generate new networks
• Avoids costly training from scratch

Overview of NAS Speedup Techniques

• Weight Inheritance & Network Morphisms
• Local changes in architecture, followed by fine-tuning steps
• [Cai et al, 2018; Elsken et al, 2017; Cortes et al, 2017; Cai et al, 2018, Elsken et al, 2019]

• Weight Sharing & One-Shot Models
• ENAS [Pham et al, 2018], DARTS [Liu et al, 2019] and many follow-ups

• Meta-Learning
• Learning across datasets
• To initialize architectural weights of DARTS [Lian et al, 2020; Elsken et al, 2020]
• Prior for blackbox optimization methods [Wong et al, 2018; Runge et al, 2019; Zimmer et al,

2020]

• Multi-Fidelity Optimization
• Exploit cheaper proxy models for blackbox optimizers, in particular Bayesian optimization
• [Jamieson & Talwalkar, 2016; Li et al, 2017; Falkner et al, 2018; Zela et al, 2018; White et al, 2021]

DARTS: Differentiable Architecture Search
[Liu et al at ICLR 2019]

Candidate operations

DARTS: Differentiable Architecture Search

• Relax the discrete NAS problem (a->b)
– One-shot model with continuous architecture weight α for each operator

– Mixed operator:

[Liu et al at ICLR 2019]

DARTS: Differentiable Architecture Search

• Relax the discrete NAS problem (a->b)
– One-shot model with continuous architecture weight α for each operator

– Mixed operator:

• Solve a bi-level optimization problem (c)

[Liu et al at ICLR 2019]

DARTS: Differentiable Architecture Search

• Relax the discrete NAS problem (a->b)
– One-shot model with continuous architecture weight α for each operator

– Mixed operator:

• Solve a bi-level optimization problem (c)

• In the end, discretize to obtain a single architecture (d)

[Liu et al at ICLR 2019]

Table of Contents
• Introduction
• Preliminary of AutoML
• DRS Feature Selection
• Selection from raw features
• Selection from generated features

• DRS Embedding Components
• DRS Interaction Components
• DRS Model Training
• DRS Comprehensive Search
• Conclusion & Future Direction
• Q&A

Background

• Feature selection:
• Select predictive features prior to model construction

• Importance:
• Time/Memory efficiency
• Accuracy

• Classification:
• Candidates
• Granularity
• How they combine with DRS

Background – Candidates
• Selection from raw features
• Occupation
• Age
• Date
• …

• Selection from generated features
• Occupation & Age
• Date & Age
• …

• Generated features v.s. Feature interaction
• Explicit v.s. Implicit
• Feature engineering v.s Model construction

Background – Granularity
• Field-level selection
• Select or deselect the whole feature field
• E.g., drop “Date”

• Feature-level selection
• Select or deselect specific feature values
• E.g., drop “0-3” for “Age”

Background – Combination Methods
• Filter
• Filter redundant features with specific scoring functions
• Neglect dependency with subsequent DRS

• Wrapper
• Elaborate feature set
• Computationally intensive

• Embedded
• Integrated into DRS
• Fixed DRS

Table of Contents

• DRS Feature Selection
• Selection from raw features
• Selection from generated features

FSTD

• Motivation:
• Large search space of feature selection
• Feature selection is a one-player game

• Target:
• Select features using temporal difference (TD)
• Field-level selection
• Filter / Wrapper

Using reinforcement learning to find an optimal set of features, 2013

FSTD
• Strategy:
• UCB-Phase (a. Exploit): Select the most predictive/stored feature
• Random-Phase (b. Explore): Randomly select a feature

• Transition: Seen or unseen
• Reward: AUC score
• Optimization: Temporal difference + UCB

An example of Tic-Tac-Tau game.

FSTD

• Scoring features: temporal difference (𝐹: feature set, 𝑓: the new feature, 𝑉: AUC)

• Final selection:
• F-FSTD: Select features with the highest AOR (single features)
• W-FSTD: Search in the traversed graph space (feature sets)

MARLFS

• Target:
• Select features via multi-agent RL
• Field-level
• Embedded

• Problem formulation:
• Agent: 𝑁 agents for 𝑁 feature fields (1 on 1)
• Action: Select or deselect the corresponding feature
• Environment: Selected feature subset

Automating feature subspace exploration via multi-agent reinforcement learning, KDD 2019

MARLFS
• State:
• Meta descriptive statistics

MARLFS
• State:
• Meta descriptive statistics
• Autoencoder

MARLFS
• State:
• Meta descriptive statistics
• Autoencoder
• Graph convolutional network (GCN)

MARLFS
• State:
• Meta descriptive statistics
• Autoencoder
• GCN

• Reward:
• DRS accuracy
• Information redundancy (𝑥_𝑖, 𝑥_𝑗: selected features)
• Information relevance (𝑐: ground-truth)

• Optimization: DQN

Subsequent works of MARLFS
• AutoFS: Introduce external knowledge

AutoFS: Automated Feature Selection via Diversity-aware Interactive Reinforcement Learning, ICDM 2020

Subsequent works of MARLFS
• AutoFS
• AutoGFS: Grouping feature fields

Group-based Feature Selection via Interactive Reinforcement Learning, SDM 2021

Subsequent works of MARLFS
• AutoFS
• AutoGFS
• SADRLFS: Multiple -> Single agent

Simplifying Reinforced Feature Selection via Restructured Choice Strategy of Single Agent, ICDM 2020

Subsequent works of MARLFS
• AutoFS
• AutoGFS
• SADRLFS
• DAIRS: Simultaneously select features and samples

Feature and Instance Joint Selection: A Reinforcement Learning Perspective, SIGIR 2022

AutoField

• Motivation
• Feeding all possible features à Extra embedding parameters
• Manually selecting feature fields à Expert knowledge & Labor effort

• Target:
• Automatically select feature fields
• Field-level selection
• Embedded

AutoField: Automating Feature Selection in Deep Recommender Systems, WWW 2022

AutoField
• Data preparation: field embeddings

• Search stage:
• Step 1: soft selection
• Step 2: updating DRS (Search)
• Step 3: updating controller

• Retraining stage:
• Step 4: hard selection
• Step 5: optimizing DRS (Retrain)

AutoField
• Controller structure:
• 𝑁 parallel nodes for 𝑁 feature fields
• Node 𝑖 contain two values: {α!", α!#}

• In training:
• α!" of predictive feature fields would increase
• α!# of non-predictive feature fields would increase

• {α!", α!#} is computed by Gumbel-Softmax
• Optimization: Gradient

AutoField

• Retraining Stage
• Only using 𝐾 fields with highest score
• Adapting model structures
• Change subsequent DRS

AdaFS
• Motivation:
• Existing feature selection methods selects a fixed subset of features
• Different user-item interactions à Different contributions

• Target:
• Adaptively selecting the most predictive features
• Field-level selection
• Embedded

AdaFS: Adaptive Feature Selection in Deep Recommender System, KDD 2022

AdaFS

• DRS
• Embedding component
• Inference model (MLP)

• Controller
• Adaptively scoring feature fields

• Feature selection
• Hard selection
• Soft selection

Field 1 Feature
Fields Field 2 Field N

Feature
 Embeddings Controller

Soft/Hard
Selection

00 0

0.2

0

0.6

Feature
Selection

Embedding Component

MLP

Output MLP Component

Soft
Selection

Hard
Selection

BatchNorm

0

0

AdaFS

Field 1 Feature
Fields Field 2 Field N

Feature
 Embeddings Controller

Soft/Hard
Selection

00 0

0.2

0

0.6

Feature
Selection

Embedding Component

MLP

Output MLP Component

Soft
Selection

Hard
Selection

BatchNorm

0

0

BatchNorm

MLP

Softmax

Feature Weights

Field NField nField 1

• Controller Network
• Scoring the feature fields with weights
• MLP + Softmax
• BatchNorm:

• Making embeddings comparable

AdaFS

• Soft Selection
• Keeping all feature fields
• Feature weights à Feature embeddings

• Hard Selection
• Selecting fields with highest weights

• Optimization: Gradient
• Drawback:

• Keeping all parameters
Field 1 Feature

Fields Field 2 Field N

Feature
 Embeddings Controller

Soft/Hard
Selection

00 0

0.2

0

0.6

Feature
Selection

Embedding Component

MLP

Output MLP Component

Soft
Selection

Hard
Selection

BatchNorm

0

0

LPFS

• Motivation
• Removing feature fields with non-zero weights hurt the performance
• Small weights do not guarantee redundant feature fields

• Target
• Generate exact-zero weights for redundant feature fields
• Field-level selection
• Embedded

LPFS: Learnable Polarizing Feature Selection for Click Through Rate Prediction, 2022

LPFS

• Problem formulation:

• LPFS:

L1 L0

LPFS

• Problem of LPFS: Gradient at 𝑥 = 0 is 0.
• Sensitive to noise
• Evolving user behavior in DRS

• LPFS++:

• Optimization: Gradient

OptFS

• Motivation
• Field-level selection is too coarse

• E.g., “user ID”
• Feature interaction considers redundant features

• Target
• Conduct feature-level selection
• Simultaneously finish feature interaction search
• Embedded

Optimizing Feature Set for Click-Through Rate Prediction, WWW 2023

OptFS
• Model input

• Feature selection:

• Search space: Gates 𝑔$! ∈ {0,1}

• Feature interaction selection:

• Prediction:

OptFS
• Searching

• Retraining

• Optimization: Gradient

Selection of raw features

• Reinforcement learning methods consider the problem of feature selection as a Markov
decision process. They are less prone to overfitting since they usually overall
performance of the model when designing reward functions;

• Gradient-based approaches are more practical to real-world recommender systems
owing to their efficiency and simplicity. In addition, they are flexible to be applied to
various recommendation models and datasets.

Model Granularity Gating/Scoring Search Strategy

FSTD Field-level Temporal Difference RL (TD + UCB)

MARLFS Field-level None RL (DQN)

AutoField Field-level Continuous Gradient

AdaFS Field-level Continuous Gradient

LPFS Field-level Zero/Non-zero Gradient (L0)

OptFS Feature-level Approx. zero Gradient (L0)

Table of Contents

• DRS Feature Selection
• Selection from raw features
• Selection from generated features

AutoCross
• Target:

• Select crossed features
• Field-level
• Wrapper

• Feature set generation:
{A, B, C, D}
à {A, B, C, D, AB}
à{A, B, C, D, AB, CD}
à{A, B, C, D, AB, CD, ABC}
à{A, B, C, D, AB, CD, ABC, ABCD}

• Feature evaluation:
• Field-wise logistic regression

• Optimization: Beam search
Automatic Feature Crossing for Tabular Data in Real-World Applications, KDD 2019

GLIDER
• Problem:
• Select generated features for black-box DRS
• Field-level
• Filter

Feature Interaction Interpretability:A Case for Explaining Ad-recommendation Systems via Neural Interaction Detection, ICLR 2020

• Problem:
• Select generated features for black-box DRS
• Field-level
• Filter

• Step 1: Global interaction detection
• LIME: Perturb the input feature

• Gradient NID: Detect the interaction

• Optimization: Gradient

GLIDER

GLIDER
• Problem:
• Select generated features for black-box DRS
• Field-level
• Filter

• Step 1: Global interaction detection
• LIME: Perturb the input feature

• Gradient NID: Detect the interaction

• Optimization: Gradient

• Step2: Construct DRS and retrain
• Same model: enhancement
• Different models: Teacher-student

AEFE
• Target:
• Construct and select combinatorial features
• Field-level
• Combination of Filter, Embedded, Wrapper

• Procedure:
• 1-Filter: Drop features with low variance
• 2-Embedded: Generate feature importance by GBDT/RF
• 3-Wrapper: Add features in a cascaded manner, greedy search

AEFE: Automatic Embedded Feature Engineering for Categorical Features, 2021

Selection of generated features

• Selectively learning the generated features can bring great precision improvement to
prediction. They are highly interpretable, which is helpful for digging deep into the
underlying relationship of the data;
• Compared with selection from raw features, generated feature selection usually has a

much larger search space. Researchers usually adopt greedy search methods, which
suffer from the heavy storage pressure and time-consuming process. It is highly desirable
for efficient AutoML techniques to facilitate the selection from generated features.

Model Combination Granularity Gating/Scoring Search Strategy

AutoCross Wrapper Field-level None Beam Search

GLIDER Filter Field-level NID Gradient

AEFE All Field-level Continuous Greedy Search

Summarize AutoML for FS

Model Combination Granularity Gating/Scoring Search Strategy

Raw Feature
FSTD Filter/Wrapper Field-level AUC RL (UCB)

MARLFS Embedded Field-level None RL (DQN)

AutoField Embedded Field-level Continuous Gradient

AdaFS Embedded Field-level Continuous Gradient

LPFS Embedded Field-level Zero/Non-zero Gradient (L0)

OptFS Embedded Feature-level Approx. zero Gradient (L0)

Generated
Feature

AutoCross Wrapper Field-level AUC Beam Search

GLIDER Filter Field-level NID Gradient

AEFE All Field-level Continuous Greedy Search

Table of Contents
• Introduction
• Preliminary of AutoML
• DRS Feature Selection
• DRS Embedding Components
• Full Embedding Search
• Column-based Embedding Search
• Row-based Embedding Search
• Column&Row-based Embedding Search
• Combination-based Embedding Search

• DRS Interaction Components
• DRS Model Training
• DRS Comprehensive Search
• Conclusion & Future Direction
• Q&A

Background

• The embedding layer is used to map the high-dimensional
features into a low-dimensional latent space.

• The cornerstone of the DRS, as the number of parameters in DRS
is concentrated in the embedding table.

Embedding Table

Number of Feature Values Embedding Size

E ∈ 𝑅%×'

Background

To improve the prediction accuracy, save storage space and reduce model size, AutoML-based
solutions are proposed for the learning of feature embedding.

Storage capacity
Inference efficiency
Prediction accuracy

0 10 20 30
0.20

0.21

0.22

0.23

0 10 20 30
0.63

0.66

0.69

M
SE

Ac
cu
ra
cy

Frequency

 Emb_2
 Emb_16
 Emb_128

high-frequencylow-frequency

Background

Embedding Size

Embedding Table

Number of Feature Values

E ∈ 𝑅%×'

• Full Embedding Search
• Column-based Embedding Search
• Row-based Embedding Search
• Column & Row-based Embedding Search
• Combination-based Embedding Search

Full Embedding Search
• The finest-grained embedding dimension search over the original embedding table

• Search the optimal embedding dimension for each feature value

ü Fully consider the impact of each feature embedding dimension on the prediction results
ü High-frequency or low-frequency feature values can be assigned with different dimensions

ⅹ Search space is huge
ⅹ Hard to reduce the storage space

Embedding Table

Number of Feature Values Embedding Size

E ∈ 𝑅%×'

Full Embedding Search-AMTL

• Search space: 𝑑! (𝑑 is the embedding size and 𝑉 is the vocabulary size)

• Twins-based architecture to avoid the unbalanced parameters update problem due to the different
feature frequencies.

• The twins-based architecture acts as a frequency-aware policy network to search the optimal dimension
for each feature value à relaxed to a continuous space by temperature softmax.

Learning effective and efficient embedding via an adaptively-masked twins-based layer. CIKM 2021.

Mask layer

high-frequency low-frequency

Full Embedding Search-PEP
• Pruning-based Solution by enforcing column-wise sparsity on the embedding table with L0 normalization.

• Search Space: 2!" (𝑑 is the embedding size and 𝑉 is the vocabulary size)

• The learnable threshold can be jointly optimized with the model parameters via gradient-based back-
propagation.

dense sparse

𝑔 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑

Soft threshold re-parameterization：

NP-hard

PEP: Learnable Embedding Sizes for Recommender Systems. ICLR 2021.

drop

learnable pruning threshold

Full Embedding Search——Summary

• Full embedding search methods aim to search the optimal embedding dimension for each feature
value, facing huge search space and impeding the search efficiency;

• To facilitate the search procedure, several approaches are proposed to shrink the search space,
which can be categorized into three kinds: column-based, row-based, and column & row-based.

Column-based Embedding Search
• The search space of Full Embedding Search (PEP and AMTL) is highly related with the embedding size 𝑑.

• To reduce the search space, AutoEmb and ESPAN divide the embedding dimension into several column-
wise sub-dimensions.

Sub-dimension 1 Sub-dimension 2

Embedding Table

Number of Feature Values Embedding Size

E ∈ 𝑅%×'

Column-based Embedding Search-AutoEmb & ESPAN

• Reduce the search space by dividing the embedding dimension into several candidate sub-dimensions

• Dynamically search the embedding sizes for different users and items

ü Better performance
ü More efficient in memory

0 10 20 30
0.20

0.21

0.22

0.23

0 10 20 30
0.63

0.66

0.69

M
SE

Ac
cu
ra
cy

Frequency

 Emb_2
 Emb_16
 Emb_128

Transform

AutoEmb & ESPAN
high-frequencylow-frequency

Column-based Embedding Search-AutoEmb

• Search Space: From 𝑑! to a! (𝑑 is the embedding size and 𝑉 is the vocabulary size, and 𝑎 is the number of sub-dimensions for
each feature)

• Two controller networks to decide the embedding sizes for users and items via end-to-end differentiable
soft selection.

• Sum over the candidate sub-dimensions with learnable weights. (Soft Selection)

• The optimization is achieved by a bi-level procedure, where the controller parameters are optimized upon
the validation set, while the model parameters are learned on the training set.

Controller networkAutoEmb
AutoEmb: Automated Embedding Dimensionality Search in Streaming Recommendations. ICDM 2021.

embedding sub-dimensions

selection weightsaggregate

Column-based Embedding Search-ESPAN
• Embedding Size Adjustment Policy Network (ESAPN) - RL (Hard Selection)

• Policy network serves as RL agents for users and items, which adjusts the embedding sizes dynamically.

• State: feature frequency and the current embedding size
• Action: enlarge or unchanged the embedding size

• Reward:

ESAPN: Automated Embedding Size Search in Deep Recommender Systems. SIGIR 2020.

Column-based Embedding Search——Summary

• Dividing the embedding dimension into column-wise sub-dimensions (e.g., AutoEmb, ESAPN) is conducive to
reducing the search space;

• Using multiply embedding tables to generate several embedding vectors (e.g., AutoEmb, ESAPN) may incur
obvious memory overhead, which can be avoid by shared-embeddings;

• Searching dimensions for each feature value will cause variable-length embedding vectors, which are hard to
store in the fix-width embedding table and reduce memory.

Row-based Embedding Search
• AutoEmb and ESAPN shrink the search space by dividing the embedding dimension into candidate

column-wise sub-dimensions.

• Group the feature values of a field based on some indicators (e.g., frequencies) and assign a row-wise
group embedding dimension for all the values within the group.

• The search space is no longer related to the number of feature values, but to the number of pre-defined
feature groups.

ü Shrink the search space, making it easier for the search algorithm to explore satisfactory results

ü Save the storage space physically

Embedding Table

Number of Feature Values Embedding Size

E ∈ 𝑅%×'

Feature Group 1

Feature Group 2

Row-based Embedding Search-SSEDS

Single-shot Embedding Dimension Search in Recommender System. SIGIR 2022.

• Set the number of groups for a feature field as 𝑏 = 1 and search a global embedding dimension for all the
feature values (field-wise embedding dimension search)

• Calculate the saliency scores for identifying the importance of each embedding dimension, which is
measured by the change of the loss value

• Top-𝑘 scores can be retained according to the memory budget and the model will be retrained to save
storage and further boost the performance.

Row-based Embedding Search-AutoSrh

• To balance the search efficiency and performance,
AutoSrh splits the features into multi-groups based on
the feature frequencies or clustering.

• Feature blocking stage —— search space: from 2!#
into 2$# (where 𝑏 is the number of groups)

• Soft selection layer to identify the importance of each
dimension in the feature embedding

• To relax the search space to be continuous during the
search stage, a gradient-based bi-level optimization
procedure is proposed

AutoSrh: An Embedding Dimensionality Search Framework for Tabular Data Prediction. TKDE 2022.

Search stage:

Derive stage: pre-defined threshold

Row-based Embedding Search——Summary

• Row-based embedding search methods explore optimal embedding dimension for a group of
feature values, shrinking the search space;

• In comparison with the column-based embedding search methods, row-based search methods
conduces to truly saving memory because feature values within a group are assigned with a
same embedding dimension, which can be stored in a fix-width embedding table.

Column & Row-based Embedding Search
• The column-based and row-based methods make different assumptions to reduce the search space from

different perspective.

• To further improve the search efficiency, several works combine these two methods and reduce the search
space significantly.

Embedding Table

Number of Feature Values Embedding Size

E ∈ 𝑅%×'

Feature Group 1

Feature Group 2

Sub-dimension 1 Sub-dimension 2
column-wise sub-dimensions
row-wise group embedding dimension

Column & Row-based Embedding Search-AutoDim

• Pre-define several candidate sub-dimensions like AutoEmb.
(column-wise)

• Set the number of groups b = 1 and search a global
embedding dimension for all the feature values of the field,
like SSEDS. (raw-wise)

• Search Space: 𝑎% (𝑎 is the number of sub-dimensions for each
feature, 𝑚 is the number of feature fields)

Goal:
Select optimal embedding dimensions for different feature fields automatically in a data-driven manner.

AutoDim: Field-aware Embedding Dimension Search in Recommender Systems. WWW 2021.

Column & Row-based Embedding Search-AutoDim

(a)	Dimensionality	Search (b)	Parameter	Re-training

Embedding
Lookup

Deriving
Discrete

Architectures

00 1

Field	1 Field	m Field	M

01 0 10 0

Weights

Transforms

00 1

Field	1 Field	m Field	M

01 0 10 0

0.7 0.3 0.2 0.8 0.6 0.4

Embedding
Lookup

Transforms

Two-stage framework

• Dimensionality search stage: find the optimal embedding dimension for each feature field
• Parameter re-training stage: select the optimal embedding dimension and re-train the model parameters

Column & Row-based Embedding Search-AutoDim

(a)	Dimensionality	Search (b)	Parameter	Re-training

Embedding
Lookup

Deriving
Discrete

Architectures

00 1

Field	1 Field	m Field	M

01 0 10 0

Weights

Transforms

00 1

Field	1 Field	m Field	M

01 0 10 0

0.7 0.3 0.2 0.8 0.6 0.4

Embedding
Lookup

Transforms

Dimensionality search stage

• Transform layer: map the embeddings into a same dimensions
• Batch Normalization layer: unify the scales

candidate
sub-embeddings

Column & Row-based Embedding Search-AutoDim

(a)	Dimensionality	Search (b)	Parameter	Re-training

Embedding
Lookup

Deriving
Discrete

Architectures

00 1

Field	1 Field	m Field	M

01 0 10 0

Weights

Transforms

00 1

Field	1 Field	m Field	M

01 0 10 0

0.7 0.3 0.2 0.8 0.6 0.4

Embedding
Lookup

Transforms

Dimensionality search stage

AutoDim searches the dimensions in a soft and continuous fashion via the Gumbel Softmax

• The architecture weights are optimized upon the validation set

• Others model parameters are learned upon the training set

weighted sum

Column & Row-based Embedding Search-AutoDim

(a)	Dimensionality	Search (b)	Parameter	Re-training

Embedding
Lookup

Deriving
Discrete

Architectures

00 1

Field	1 Field	m Field	M

01 0 10 0

Weights

Transforms

00 1

Field	1 Field	m Field	M

01 0 10 0

0.7 0.3 0.2 0.8 0.6 0.4

Embedding
Lookup

Transforms

2-d 3-d 2-d

2-d 3-d 2-d

Parameter re-training stage

• The optimal embedding with the largest weight is selected for each feature field
• Retrain the model parameters to obtain the final model

Column & Row-based Embedding Search-NIS

• NIS also reduces the search space from both row-wise and column-wise perspectives

Head Feature
• More data, more information
• larger embedding size is reasonable

Tail Feature
• Less data, less information
• Small embedding size is enough

NIS: Neural Input Search for Large Scale Recommendation Models. KDD 2020.

head

tail

RL-based AutoML solution
• Main model is the deep recommendation model
• Controller learns to sample embedding dimensions that

generate higher reward.
• Reward: R = RQ − λ ∗ CM

Embedding Blocks: discretizing an embedding matrix of size v × d into S × T sub-matrices

Head items

Tail items

[(3M, 192), (7M, 64) …](7M, 192)

Single-size Embedding (SE) Multi-size Embedding (ME)

Column & Row-based Embedding Search-NIS

multiple embedding blocks one choice a sequence of choices

optimization objective
training cost

Column & Row-based Embedding Search——Summary

• Although it is theoretically optimal to search the suitable dimension for each feature value, it poses great
challenges to efficient search algorithm. Instead, shrinking the search space in an appropriate manner may
result in better performance;

• Reducing the search space from both row-wise and column-wise perspectives attributes to reducing the
search space and achieving better results;

• The evolution of search space from detailed to abstract can lead to higher efficiency.

Combination-based Embedding-AutoDis

1. Category 1: No Embedding

2. Category 2: Field Embedding

• Low capacity: difficult to capture informative knowledge of numerical fields.
• Poor compatibility: difficult to adapt to some models (e.g., FM).

• Low capacity: single uniform field-specific embedding.

3. Category 3: Discretization
• TPP (Two-Phase Problem)
• SBD (Similar value But Dis-similar embedding)
• DBS (Dis-similar value But Same embedding)

Besides searching embedding dimension dynamically for each features, learning embedding via
combination is also a trend for feature representation learning

Existing methods for numerical feature representation have some limitations:

AutoDis: An Embedding Learning Framework for Numerical Features in CTR Prediction. KDD 2021.

Combination-based Embedding-AutoDis

AutoDis is a numerical features embedding learning framework with high model capacity, end-to-end
training and unique representation properties preserved.

Meta-embeddings

Automatic Discretization

Aggregation Function

selection weights

controller

Summarize DRS Embedding

* 𝑑 is the embedding size, 𝑉 is the vocabulary size, 𝑚 is the number of feature fields, 𝑎 is the number of sub-dimensions, 𝑏 is the
number of feature groups, 𝑘 is the number of meta-embeddings. (a < d, b<<V)

Coffee Break

A Comprehensive Survey on Automated Machine
Learning for Recommendations.
https://arxiv.org/pdf/2204.01390

We are hiring !

Huawei Noah’s Ark Lab
Wenqi Fan

The Hong Kong
Polytechnic University

Xiangyu Zhao
City University of

Hong Kong

https://arxiv.org/pdf/2204.01390

Table of Contents
• Introduction
• Preliminary of AutoML
• DRS Feature Selection
• DRS Embedding Components
• DRS Interaction Components
• Feature Interaction Search
• Interaction Function Search
• Interaction Block Search

• DRS Model Training
• DRS Comprehensive Search
• Conclusion & Future Direction
• Q&A

Background

Effectively modelling feature interactions is important.

§ Both low-order and high-order feature interactions play
important roles to model user preference.
§ People like to download popular apps à id of an app

may be a signal
§ People often download apps for food delivery at meal

time à interaction between app category and time-
stamp may be a signal

§ Male teenagers like shooting game à interaction of app
category, user gender and age may be a signal

§ Most feature interactions are hidden in data and
difficult to identify (e.g., “diaper and beer" rule)

Background

The challenges of modelling feature interactions:

1) Enumerate all feature interactions
• Large memory and computation cost
• Difficult to be extended into high-order interactions
• Useless interactions

2) Require human efforts to identify important feature interactions
• High labor cost
• Risks missing some counterintuitive (but important) interactions

3) Require human efforts to select appropriate interaction functions
• Human expert knowledge
• Global interaction function for all the feature interactions

Background

Automatically select important feature interactions with appropriate interaction functions

AutoML for feature interaction search:
1. Feature Interaction Search —— search beneficial feature interactions
2. Interaction Function Search —— search suitable interaction functions
3. Interaction Block Search —— search operations over the whole representation

Feature Interaction Search

AutoML for feature interaction search:
1. Feature Interaction Search —— search beneficial feature interactions
2. Interaction Function Search —— search suitable interaction functions
3. Interaction Block Search —— search operations over the whole representation

Feature Interaction Search-AutoFIS

• Not all the feature interactions are useful.

• Identify such noisy feature interactions and filter them.

AutoFIS: Automatic Feature Interaction Selection in Factorization Models for Click-Through Rate Prediction. KDD 2020

Feature Interaction Search-AutoFIS

• Search Stage
• Detect useful feature interactions

• Retrain Stage
• Retrain model with selected feature interactions

Feature Interaction Search-AutoFIS

• Gate for each feature interaction
• Huge search space 2&() (m is the number of feature field)

• To make such process differentiable, AutoFIS relaxes the discrete search space to be continuous, by
defining architecture parameters α.
• Batch Normalization to eliminate scale coupling
• Using GRDA Optimizer to obtain stable and sparse architecture parameters

Indicator α = 0 or 1

Search Stage:

• Abandon unimportant feature interactions

• Retrain model

Retrain Stage:

Feature Interaction Search-AutoGroup

The limitation of AutoFIS:
• When searching high-order feature interactions, the search space of AutoFIS is huge, resulting in low

search efficiency.

AutoGroup: Automatic Feature Grouping for Modelling Explicit High-order Feature Interactions in CTR Prediction. SIGIR 2020

Solution of AutoGroup:
• To solve the efficiency-accuracy dilemma, AutoGroup proposes automatic feature grouping, reducing

the pth-order search space from 2&(
*

to 2'((𝑔 is the number of pre-defined groups)

Feature Interaction Search-AutoGroup

Each feature is possible to be selected into the feature sets of each
order.
• Π!,#

$ ∈ {0,1}: whether select feature (! into the)%& set of order-*.

To make the selection differentiable, we relax the binary discrete value
to a softmax over the two possibilities:

Π!,#
$ = '

'()*+(-.!,#
$)Π!,#

$ +)*+ -.!,#
$

'()*+ -.!,#
$ (1 − Π!,#

$).

To learn a less-biased selection probability, we use Gumbel-Softmax:

Π!,#
$

0
=	

exp	(log	70 + 809)	
∑ exp	(log	701 + 8019)21∈ 4,'

	where	> ∈ {0,1}.

74 =
1

1 + exp(−7!,#
$) 											7'=

exp −7!,#
$

1 + exp −7!,#
$

80 = − log(− log ?) 	where	? ∼ ABC(>DE 0,1

Trainable Parameters: {"!,#$ }

Feature Grouping Stage:

Feature Interaction Search-AutoGroup

Feature set representation:

𝑔)
* = ,

++∈-,
-

𝑤.
* 𝑒.

𝑠!
": the 𝑗#$ feature set for order-𝑝 feature interactions.
𝑒%: embedding for feature 𝑓%
𝑤%
": weights of embeddings in feature set 𝑠!

".

Interaction Stage:

Interaction at a given order:
• The order-𝑝 interaction in a given set 𝑠!

" is:

Feature Interaction Search-FIVES

The limitation of AutoGroup:
• Solve the efficiency-accuracy dilemma via feature grouping

• Ignore the Order-priority property
Ø The higher-order feature interactions quality can be relevant to their de-generated low-order ones

FIVES: Feature Interaction via Edge Search for Large-Scale Tabular Data. KDD 2021

Solution of FIVES:
• Regard the original features as a feature graph and model the high-order feature interactions by the multilayer

convolution of GNN, reducing the pth-order search space from 2#!
"

to 2$#.
• Parameterize the adjacency matrix and make them depend on the previous layer.

Feature Interaction Search-FIVES

• With an adjacency tensor A, the dedicated graph convolutional operator produces the node
representations layer-by-layer. For the 𝑘-order:

• The node representation at 𝑘-th layer corresponds to the generated (𝑘 + 1)-order interactive features:

Feature Interaction Search-FIVES

• The task of generating useful interactive features is equivalent
to learning an optimal adjacency tensor A, namely edge search.

• The edge search task could be formulated as a bi-level
optimization problem:

• To make the optimization more efficient, FIVES uses a soft
𝐴(0) for propagation at the 𝑘-th layer, while the calculation of
𝐴(0)still depends on a binarized 𝐴(023):

Feature Interaction Search——Summary

• Feature interaction search based methods focus on searching beneficial low-/high order
interactive signals for factorization models;

• For high-order interaction search, different approaches are proposed to reduce the search space,
such as feature grouping, hashing, tensor decomposition, and graph aggregation;

• Gradient-based search algorithm is dominant in this task due to the high efficiency.

Interaction Function Search

AutoML for feature interaction search:
1. Feature Interaction Search —— search beneficial feature interactions
2. Interaction Function Search —— search suitable interaction functions
3. Interaction Block Search —— search operations over the whole representation

Interaction Function Search-SIF

• Generate embedding vectors for users and items

• Generate predictions by an inner product between embedding
vectors

• Evaluate predictions by a loss function on the training data set

Efficient Neural Interaction Function Search for Collaborative Filtering. WWW 2020

Interaction function:
How embedding vectors interact with each other?

Collaborative filtering

Interaction Function Search-SIF

• SIF selects different interaction functions across different datasets.

Interaction Function Search-AutoFeature

• Not all the feature interactions between each pair of fields need to be modeled.

• Not all the useful feature interactions can be modeled by the same interaction functions.

Feature 1 Feature 2 Feature N

Embed 1 Embed 2 Embed N Embedding
 Layer

Fully Connected Layers

Prediction

Sub-net 1 Sub-net 2 Sub-net i

F1 F2

FC layer

Hidden
State

F1*F2

AutoFeature: Searching for Feature Interactions and Their Architectures for Click-through Rate Prediction. CIKM 2020

Interaction Function Search-AutoFeature

AutoFeature automatically designs a different sub-net for each pair of fields.
• Train a Naïve Bayes Tree to classify different network structures, where the tree tends to classify the

most well-performed network into the leftmost leaf subspace.
• Sample leaf nodes from these leaf subspaces based on the Chinese Restaurant Process (CRP).

Interaction Function Search-AutoFeature

• The top two samples with the highest accuracy will be picked to perform a crossover operation at the
midpoint of the architecture string, which is followed by q mutations.

• Check if the resulting architecture belongs to the subspace represented by the leaf node. If this is not the
case then the procedure is repeated.

• The whole search procedure continues until the desired accuracy is achieved or the maximum number of
steps is reached.

Interaction Function Search-AOANet

• The interaction functions of SIF and AutoFeature are artificially specified, which requires high
dependence on domain knowledge.

• AOANet proposes a generalized interaction paradigm by decomposing commonly-used structures into
Projection, Interaction and Fusion phase.
• Interaction

• Fusion

Architecture and operation adaptive network for online recommendations. KDD 2021.

Interaction Function Search——Summary

• Although searching appropriate interaction functions for different feature interactions helps to
improve accuracy, the introduced cost is higher, which hinders the application in high-order
scenarios;

• Generalized interaction function search (e.g., AOANet) is more efficient than searching over
human-designed search space (e.g., AutoFeature), providing a promising paradigm for high-
order interaction function search.

Interaction Block Search

AutoML for feature interaction search:
1. Feature Interaction Search —— search beneficial feature interactions
2. Interaction Function Search —— search suitable interaction functions
3. Interaction Block Search —— search operations over the whole representation

Interaction Block Search-AutoCTR

Hierarchical Search Space
• Properties: functionality complementary, complexity aware, …

ü Inter-Block: MLP block, dot-product block, factorization-machine block, …
ü Intra-Block: Block Appendant Hyper-parameters

Virtual
Blocks

Dot-
product FM MLP

Inner products
Inner productsAddition

Addition

Towards Automated Neural Interaction Discovery for Click-Through Rate Prediction. KDD 2020

Interaction Block Search-AutoCTR

Search space construction
• DAG of virtual blocks and grouped feature embeddings
• Both block hyper-parameters (Intra-Block) and connection among blocks (Inter-Block) are to be

searched

Sparse feature
embeddings

Dense feature
concatenation

y

MLP

FM

FM
Linear

MLP
Dot-
product

Interaction Block Search-AutoCTR

Multi-Objective Evolutionary Search Algorithm

Add

Back

All the Explored Architectures

Age threshold ≤

Multi-Objective
Selection

Parent
selection

Generate
Neighbors

Learning-to-rank
Guider

Guided
mutation

Rank-based

Sampling

Search
Loop

New Population
Survivor
selection

Interaction Block Search-AutoCTR

Multi-Objective Evolutionary Search Algorithm

Add

Back

All the Explored Architectures

Age threshold ≤

Multi-Objective
Selection

Parent
selection

Generate
Neighbors

Learning-to-rank
Guider

Guided
mutation

Rank-based

Sampling

Search
Loop

New Population
Survivor
selection

Interaction Block Search-AutoCTR

Multi-Objective Evolutionary Search Algorithm

Add

Back

All the Explored Architectures

Age threshold ≤

Multi-Objective
Selection

Parent
selection

Generate
Neighbors

Learning-to-rank
Guider

Guided
mutation

Rank-based

Sampling

Search
Loop

New Population
Survivor
selection

Interaction Block Search-AutoCTR

Multi-Objective Evolutionary Search Algorithm

Add

Back

All the Explored Architectures

Age threshold ≤

Multi-Objective
Selection

Parent
selection

Generate
Neighbors

Learning-to-rank
Guider

Guided
mutation

Rank-based

Sampling

Search
Loop

New Population
Survivor
selection

Interaction Block Search-AutoPI

Search Space
• The interaction cell formulates the higher-order feature interactions
• The ensemble cell formulates the ensemble of lower-order and higher-order interactions

A General Method For Automatic Discovery of Powerful Interactions In Click-Through Rate Prediction. SIGIR 2021

Interaction Block Search-AutoPI

Search Strategy
• Continuous relaxation

Interaction Block Search——Summary

• Modeling overall high-order feature interactions over the whole feature sets implicitly can
significantly shrink the search space in comparison with the explicit high-order interaction
function search, making the search procedure more efficient;

• Interaction block search based methods with more abstract search space may become
mainstream gradually due to its efficiency.

Summarize DRS Interaction

* 𝑚 is the number of feature fields, p is the order, 𝑔 is the number of pre-defined groups, 𝑛 is the number of pre-defined bolcks, c is
the number of candidate interaction functions.

Table of Contents
• Introduction
• Preliminary of AutoML
• DRS Feature Selection
• DRS Embedding Components
• DRS Interaction Components
• DRS Model Training
• DRS Comprehensive Search
• Conclusion & Future Direction
• Q&A

Background

• Model training:
Searching for architectures related to model
training

• Comprehensive search:
Searching for several parts of DRS

Table of Contents
• Introduction
• Preliminary of AutoML
• DRS Feature Selection
• DRS Embedding Components
• DRS Interaction Components
• DRS Model Training
• DRS Comprehensive Search
• Conclusion & Future Direction
• Q&A

AutoLoss

• Motivation:
• Predefined and fixed loss function
• Exhaustively or manually searched fused loss

• Target:
• Searching for loss function
• Considering convergence behavior

AutoLoss: Automated Loss Function Search in Recommendations, KDD 21

AutoLoss – Forward-propagation
• Step 1: the DRS makes predictions
• Step 2: calculating candidate losses
• Step 3: the controller generates weights(probabilities) according to predictions
• Step 4: calculating the overall Loss (Weighted sum)

Step 1 Step 2

Step 3

Step 4

AutoLoss – Backward-propagation
• DRS network: updated based on training error

• Controller: updated based on validation error
validation error

training error

AutoLossGen

• Motivation:
• Handcrafted loss -> expertise & efforts
• Loss combinations -> all candidates are not suitable

• Target:
• Generate loss functions based on basic mathematical operations

AutoLossGen: Automatic Loss Function Generation for Recommender Systems, SIGIR 22

AutoLossGen

• Search space: basic operations

• Loss function generation: operation + position

AutoLossGen

• Phase I (Search by RL)
• Step 1: Loss function generation
• Step 2: Check the formula
• Step 3: One-shot evaluation (Reward)
• Step 4: Backward

AutoLossGen

• Phase I (Search by RL)

• Phase II
• Check the gradient

AutoLossGen

• Phase I (Search by RL)

• Phase II
• Check the gradient

• Phase III
• Train RS to converge

AutoFT

• Target:
transfer learning for DRS

• Search space:
• Field-wise transfer
• Layer-wise transfer

• Strategy: gradient

AutoFT: Automatic Fine-Tune for Parameters Transfer Learning in Click-Through Rate Prediction, 2021

Summarize DRS Model Training

• Loss-based optimization methods facilitate recommendation model training via
searching optimal loss function automatically, bringing significant results;
• From loss function to transfer learning, researchers gradually realize more flexible and

efficient methodologies to facilitate model training.

Table of Contents
• Introduction
• Preliminary of AutoML
• DRS Feature Selection
• DRS Embedding Components
• DRS Interaction Components
• DRS Model Training
• DRS Comprehensive Search
• Conclusion & Future Direction
• Q&A

AIM
• Search space:
• Feature interaction
• Interaction function
• Embedding dimension

• Strategy:
• Gradient

AIM: Automatic Interaction Machine for Click-Through Rate Prediction, TKDE 2021

AIM

• Feature interaction search
• Progressively enlarge feature interactions
• For 𝑝 th order: search for interaction of 𝑝 − 1 th order and 1 st

AIM

• Interaction function search
• Consider function-wise embeddings

AIM

• Embedding dimension search
• Consider the position information during the search
• Obtain embeddings dimensions from the pruned embeddings for retraining

AIM
• Step 1: Search for feature interaction and feature interaction function
• Step 2: Search for embedding dimensions
• Step 3: Construct DRS and retrain

AutoIAS

• Search space:
• Embedding size
• Projection size
• Feature interaction
• Interaction function
• MLP

• Strategy:
• Knowledge distillation
• Reinforcement learning

Autoias: Automatic integrated architecture searcher for click-trough rate prediction, CIKM 2021

• Embedding size (S1)

• Projection size (S2)
• Unified embedding for feature interaction

• Feature interaction (S3)
• First order features (𝑁)
• Second order interaction (,

-)

• Interaction function (S4)

• MLP (Fixed 𝐿)
• Input layer (S5)
• Layer dimensions (S6)

AutoIAS

AutoIAS

• Sample process

• Reward

AutoIAS

• Step 1: Train teacher network (the largest one)

• Step 2: Sample and update architectures as student network (KD step)

• Step 3: Sample architectures again and train the policy

• Motivation:
• 3 parts: sequential, non-sequential, MLP
• Unified model for all scenarios
• Restricted search space

• Target:
• Searching for 3 parts
• Adaptive model

AMEIR

Non-Sequential features

Sequential features

Automatic Behavior Modeling, Interaction Exploration and MLP Investigation in the Recommender System, IJCAI 2021

AMEIR – Search Space
• Subspace 1 (Behavior modeling)

• Searching for a fixed number of layers (𝐿)
• Normalization {Layer normalization, None}
• Layer {Conv, Recur, Pooling, Attention}
• Activation {ReLU, GeLU, Swish, Identity}

• Subspace 2 (Interaction exploration)
• Interaction function: hadamard product (fixed)
• Feature interaction candidates

• Subspace 3 (MLP investigation)
• MLP dimension
• Activation: {ReLU, Swish, Identity, Dice}

AMEIR
• Overall search strategy: One-shot random search
• Step 1: Using a predefined MLP, search for the optimal architecture.
• Step 2: Combined with SMBO, progressively expand the interaction sets, also use a

predefined MLP.
• Step 3: Using a weight matrix of maximal dimension to realize one-shot search

Summarize DRS Comprehensive Search

• Existing comprehensive search methods mainly focus on feature embedding and feature
interaction components. Some works also consider the MLP structure for final perdition
while other parts as sequential feature modeling get few attention.

• The search space is very large for comprehensive search since it considers multiple
components. As a result, efficient search strategies are usually adopted.

Table of Contents
• Introduction
• Preliminary of AutoML
• DRS Feature Selection
• DRS Embedding Components
• DRS Interaction Components
• DRS Model Training
• DRS Comprehensive Search
• Conclusion & Future Direction
• Q&A

Conclusion
Automated Machine Learning contribute to improving the performance of deep recommender systems in a
data-driven manner.

• Search embedding components to better model feature representations
• Design deep networks to better capture feature interactions

• Design model training process for more efficient and effective optimization
• Design comprehensive system architectures to better improve performance

Dataset

Optimization
Metric

Constraints
(Time & Cost)

Automated
Machine Learning

Machine Learning
Model

Automated Machine Learning

Conclusion

AutoML advantages:
• Different data à different architectures
• Less expert knowledge
• Saving time and efforts

AutoML for Deep Recommender Systems

The trend of AutoML for recommender system

§ Existing AutoML-based work
evolves from single-component
search to multi-component joint
search.

§ The search space of these AutoML-
based work develops from detailed
to abstract for shrinking search
space and improving search
efficiency.

§ The search algorithm of existing
work is mainly based on gradient-
based methods, thus providing
efficient model searching and
training mode.

Summarize DRS Feature Selection

Selection of raw features

• Reinforcement learning methods consider the problem of feature selection as a Markov
decision process. They are less prone to overfitting since they usually overall
performance of the model when designing reward functions;

• Gradient-based approaches are more practical to real-world recommender systems
owing to their efficiency and simplicity. In addition, they are flexible to be applied to
various recommendation models and datasets.

Model Granularity Gating/Scoring Search Strategy

FSTD Field-level Temporal Difference RL (TD + UCB)

MARLFS Field-level None RL (DQN)

AutoField Field-level Continuous Gradient

AdaFS Field-level Continuous Gradient

LPFS Field-level Zero/Non-zero Gradient (L0)

OptFS Feature-level Approx. zero Gradient (L0)

Selection of generated features

• Selectively learning the generated features can bring great precision improvement to
prediction. They are highly interpretable, which is helpful for digging deep into the
underlying relationship of the data;
• Compared with selection from raw features, generated feature selection usually has a

much larger search space. Researchers usually adopt greedy search methods, which
suffer from the heavy storage pressure and time-consuming process. It is highly desirable
for efficient AutoML techniques to facilitate the selection from generated features.

Model Combination Granularity Gating/Scoring Search Strategy

AutoCross Wrapper Field-level None Beam Search

GLIDER Filter Field-level NID Gradient

AEFE All Field-level Continuous Greedy Search

Future Direction for Feature Selection

1) Feature Selection
• Combinatorial features are of great importance for recommender systems.

• How to generate and select combinatorial features effectively and save memory usage is an urgent
problem for both industry and academics

Summarize DRS Feature Embedding

* 𝑑 is the embedding size, 𝑉 is the vocabulary size, 𝑚 is the number of feature fields, 𝑎 is the number of sub-dimensions, 𝑏 is the
number of feature groups, 𝑘 is the number of meta-embeddings. (a < d, b<<V)

Full Embedding Search——Summary

• Full embedding search methods aim to search the optimal embedding dimension for each feature
value, facing huge search space and impeding the search efficiency;

• To facilitate the search procedure, several approaches are proposed to shrink the search space,
which can be categorized into three kinds: column-based, row-based, and column & row-based.

Column-based Embedding Search——Summary

• Dividing the embedding dimension into column-wise sub-dimensions (e.g., AutoEmb, ESAPN) is conducive to
reducing the search space;

• Using multiply embedding tables to generate several embedding vectors (e.g., AutoEmb, ESAPN) may incur
obvious memory overhead, which can be avoid by shared-embeddings;

• Searching dimensions for each feature value will cause variable-length embedding vectors, which are hard to
store in the fix-width embedding table and reduce memory.

Row-based Embedding Search——Summary

• Row-based embedding search methods explore optimal embedding dimension for a group of
feature values, shrinking the search space;

• In comparison with the column-based embedding search methods, row-based search methods
conduces to truly saving memory because feature values within a group are assigned with a
same embedding dimension, which can be stored in a fix-width embedding table.

Column & Row-based Embedding Search——Summary

• Although it is theoretically optimal to search the suitable dimension for each feature value, it poses great
challenges to efficient search algorithm. Instead, shrinking the search space in an appropriate manner may
result in better performance;

• Reducing the search space from both row-wise and column-wise perspectives attributes to reducing the
search space and achieving better results;

• The evolution of search space from detailed to abstract can lead to higher efficiency.

Future Direction for Feature Embedding

2) Feature Embedding Search
• Feature embeddings account for the majority of the parameters for the recommendation model

• Combining the feature representation learning with model compression or quantization automatically
may be a promising research direction

Summarize DRS Feature Interaction

* 𝑚 is the number of feature fields, p is the order, 𝑔 is the number of pre-defined groups, 𝑛 is the number of pre-defined bolcks, c is
the number of candidate interaction functions.

Feature Interaction Search——Summary

• Feature interaction search based methods focus on searching beneficial low-/high order
interactive signals for factorization models;

• For high-order interaction search, different approaches are proposed to reduce the search space,
such as feature grouping, hashing, tensor decomposition, and graph aggregation;

• Gradient-based search algorithm is dominant in this task due to the high efficiency.

Interaction Function Search——Summary

• Although searching appropriate interaction functions for different feature interactions helps to
improve accuracy, the introduced cost is higher, which hinders the application in high-order
scenarios;

• Generalized interaction function search (e.g., AOANet) is more efficient than searching over
human-designed search space (e.g., AutoFeature), providing a promising paradigm for high-
order interaction function search.

Summarize DRS Interaction

* 𝑚 is the number of feature fields, p is the order, 𝑔 is the number of pre-defined groups, 𝑛 is the number of pre-defined bolcks, c is
the number of candidate interaction functions.

Future Direction for Feature Interaction

3) Feature Interaction Search
• Existing interaction functions, e.g., inner product and MLP, are widely-used for recommendation
• Designing and introducing more informative interaction operators to generate more diverse interaction

functions may improve the model prediction performance

Summarize DRS Model Training

• Loss-based optimization methods facilitate recommendation model training via
searching optimal loss function automatically, bringing significant results;
• From loss function to transfer learning, researchers gradually realize more flexible and

efficient methodologies to facilitate model training.

Summarize DRS Model Training

• Loss-based optimization methods facilitate recommendation model training via
searching optimal loss function automatically, bringing significant results;
• From loss function to transfer learning, researchers gradually realize more flexible and

efficient methodologies to facilitate model training.

Future Direction for Model Training

4) Model Training
• Existing works mainly focus on the training loss, including loss function selection or generation and

regularization adjustment.

• More complex directions for model training should be explored, e.g., optimizer settings, gradient
direction guidance.

Summarize DRS Comprehensive Search

• Existing comprehensive search methods mainly focus on feature embedding and feature
interaction components. Some works also consider the MLP structure for final perdition
while other parts as sequential feature modeling get few attention.

• The search space is very large for comprehensive search since it considers multiple
components. As a result, efficient search strategies are usually adopted.

Future Direction for Comprehensive Search

5) Comprehensive Search
• Existing solutions search each component separately with heterogeneous search space, resulting in low

search efficiency and sub-optimal performance.
• It is potential to convert the heterogeneous search space into an isomorphic unified search space and

perform efficient search algorithm.

Future Directions

7) User Behavior Modeling
• User history behaviors contain different dimensions of interests. Automatically retrieving beneficial

history behaviors for modeling user preference is an important further direction.

6) Multi-task Learning
• Exploiting different revenue targets (e.g., click-through rate and conversion rate), is one of the most

important techniques for industry recommendations. It is worthy of designing an automatic algorithm for
adaptive multi-task learning.

Q&A

A Comprehensive Survey on Automated Machine
Learning for Recommendations.
https://arxiv.org/pdf/2204.01390

We are hiring !

Huawei Noah’s Ark Lab
Wenqi Fan

The Hong Kong
Polytechnic University

Xiangyu Zhao
City University of

Hong Kong

https://arxiv.org/pdf/2204.01390

